International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 143–150

(M CS)

Three Types of Fuzzy Group Topological Spaces and a Comparison Among Them

Majd Hamid Mahmood¹, Fuad A. Abushaheen²

¹Department of Mathematics College of Education University of Al-Mustansiriyah Baghdad, Iraq

²Basic Science Department Faculty of Arts and Educational Sciences Middle East University Amman, Jordan

email: mgmg227@yahoo.com, Fshaheen@meu.edu.jo

(Received June 6, 2023, Accepted July 26, 2023, Published August 31, 2023)

Abstract

In this paper, we introduce three new structures of fuzzy group sets and three new structures of fuzzy group topological spaces and we study the relation among them

1 Introduction

In 1979, Foster [1] introduced the concept of fuzzy topological group using Lowen's definition of fuzzy topological spaces. Since then, several definitions and studies of fuzzy topological groups have been proposed. For instance, Hai [3] and Liang [4] presented definitions based on Chang's definition. In this paper, we introduce three new structures of fuzzy group sets using a different approach from previous definitions: element fuzzy group set, fuzzy

Key words and phrases: Element fuzzy group topology, fuzzy group topology, dual fuzzy group topology.

AMS (MOS) Subject Classifications: 54B05, 22A05. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net group set, and dual fuzzy group set. We investigate the relationships among them based on the definition of crisp sets [2] and generate three new related structures of fuzzy group topologies: element fuzzy group topology, fuzzy group topology, and dual fuzzy group topology.

2 Element Fuzzy Group Topology

In this section, we introduce a new type of group topological space called Element Fuzzy Group Topology but before that we give the following definition and some remarks.

Definition 2.1. A group G is called an element fuzzy group set, denoted by fgx-set, if for each element a in G associated to a membership function $M_G(a)$, where $M_G(a) : a \to [0,1]$ for all $a \in G$; i.e., fgx-set $\tilde{U} = \{\tilde{a} : \tilde{a} = a_{\lambda}^{M_G(a_{\lambda})}, \text{ for all } \lambda \in \omega\}.$

Remark 2.2. 1- The universal fgx-set $\widetilde{U} = \{\widetilde{a} : \widetilde{a} = a_{\lambda}^{M_{G(a_{\lambda})}}, M_{G}(a_{\lambda}) = 1, a_{\lambda} \in \mathbb{R}, forall \quad \lambda \in \omega\}.$

2- The null $f_g x$ -set $\tilde{\phi} = \{ \tilde{a} : \tilde{a} = a_{\lambda}^{M_G(a_{\lambda})}, M_G(a_{\lambda}) = 0, a_{\lambda} = 0, for all \quad \lambda \in \omega \}.$

3- That \tilde{a} is an fgx-element of fgx-set \tilde{U} will be denoted by $\tilde{a} \in \tilde{U}$. 4- Two fgx-elements $\tilde{a} : \tilde{a} = a_{\lambda}^{M_{G(a_{\lambda})}}, \tilde{e} : \tilde{e} = e_{\lambda}^{M_{G(e_{\lambda})}}$ are fgx-equal if $a_{\lambda} = e_{\lambda}$ and $M_{G}(a_{\lambda}) = M_{G}(e_{\lambda})$.

5- For fgx-sets \tilde{A} and \tilde{Y} generated by the same group G, \tilde{A} is said to be fgx-subset of \tilde{Y} ($\tilde{A} \subseteq \tilde{Y}$) if for every fgx-element $\tilde{a} \in \tilde{Y}$, we have $\tilde{a} \in \tilde{Y}$. 6- The fgx-union, fgx-intersection of two fgx-sets \tilde{A} , \tilde{Y} generated by the same group G, where $\tilde{A} = \{\tilde{a}_{\lambda} : \tilde{a}_{\lambda} = a_{\lambda}^{M_{G}(a_{\lambda})}, \text{ for all } \lambda \in \omega\}, \tilde{Y} = \{\tilde{a}_{\sigma} :$ $\tilde{a}_{\sigma} = a_{\sigma}^{M_{G}(a_{\sigma})}, \text{ for all } \sigma \in \omega\}$ are defined as follows: $\tilde{N} = \tilde{A} \cup \tilde{Y} = \{\tilde{a}_{\rho} : \tilde{a}_{\rho} = a_{\rho}^{M_{G}(a_{\rho})}, \text{ for all } \rho \in \omega\}, M_{G}(a_{\rho}) = \max\{M_{G}(a_{\lambda}), M_{G}(a_{\sigma})\}, a_{\rho} = \max\{a_{\lambda}, a_{\sigma}\}, \tilde{N} = \tilde{A} \cap \tilde{Y} = \{\tilde{a}_{\rho} : \tilde{a}_{\rho} = a_{\rho}^{M_{G}(a_{\rho})}, \text{ for all } \rho \in \omega\}, M_{G}(a_{\rho}) = \min\{M_{G}(a_{\lambda}), M_{G}(a_{\sigma})\}, M_{G}(a_{\rho}) = \min\{M_{G}(a_{\lambda}), M_{G}(a_{\sigma})\}, a_{\rho} = \min\{a_{\lambda}, a_{\sigma}\}.$

Example 2.3. 1- Consider the group $G = (G, .) = \{1, -1, i, -i\}$ Define $M_G(a) : a \to [0, 1]$, and

$$M_G(a) = \begin{cases} 0.2, & x = 1\\ 0.4, & x = -1\\ 0.5, & x = \pm i \end{cases}$$

Three Types of Fuzzy Group Topological Spaces...

Then $\tilde{A} = \{1^{0.2}, -1^{0.4}, i^{0.5}, -i^{0.5}\}$ is fgx-set.

2- Let $G = (\mathbb{Z}, +)$ and $M_G(a) : a \to [0, 1]$, for all $a \in G$ defined as follows: $M_G(a) = 0.0369$ for all $a \in G$. Then the resulting set is fgx-set.

Definition 2.4. Let G be a group. Then (G, τ_{fgx}) is called an element fuzzy group topological space (simply τ_{fgx} -space) on V (the maximum fg_x -set) if τ_{fgx} satisfies the following conditions:

- 1. $\tilde{\phi}$, \tilde{V} are in τ_{fgx} ,
- 2. The fgx-union of any members of fgx-set in τ_{fgx} belongs to τ_{fgx} ,
- 3. The fgx-intersection of any two fgx-set in τ_{fgx} belong to τ_{fgx} .

The fgx-sets of τ_{fgx} are called τ_{fgx} -open sets, their complements are called τ_{fgx} -closed sets.

Remark 2.5. If $\tilde{A} \in \tau_{fgx}$, the complement of fgx-set $\tilde{A} = \{\tilde{a} = a_{\lambda}^{(M_G(x_{\lambda}))}\}$ is defined by: $\tilde{A}^c = \{\tilde{a}^c : \tilde{a}^c = a_{\lambda}^{(1-(M_G(x_{\lambda})))}, \lambda \in \omega\}.$

Definition 2.6. An fgx-set \tilde{A} in an fgx-topology (G, τ_{fgx}) is called fgxneighborhood of fgx-point \tilde{a} in (G, τ_{fgx}) if there is a fgx-set \tilde{V} in τ_{fgx} such that $\tilde{a} \in \tilde{V} \subseteq \tilde{A}$.

Definition 2.7. Let G be a group, (G, τ_{fgx}) be a fgx-space and $\tilde{A} \in \tau_{fgx}$. Then the closure and interior of \tilde{A} are defined by: $cl(\tilde{A}) = \tilde{\cap} \{\tilde{Y} : \tilde{Y}fgx - closed \quad set \quad in \quad \tau_{fgx}, \tilde{A} \subseteq \tilde{Y} \}$ and $int(\tilde{A}) = \tilde{\cup} \{\tilde{Y} : \tilde{Y}fgx - open \quad set \quad in \quad \tau_{fax}, \tilde{Y} \subseteq \tilde{A} \}.$

3 Fuzzy Group Topology

Definition 3.1. Let G be a group. If each element x in G associated to a membership function M_G where $M_G : G \to [0,1]$. Then the resulting set is said to be fuzzy group (denoted by fg-set).

Remark 3.2. 1- For a group G, the fg-universal set $\hat{G} = \{G^{M_G} : M_G(x) = 1\}$.

2- For a group G, the fg-null set $\hat{\phi} = \{G^{M_G} : M_G = 0\}.$

3- The fact that \hat{a} is an fg-element of fg-set \hat{A} will be denoted by $\hat{a} \in \hat{A}$.

4- Two fg-elements $\hat{a} = a^{M_{G_1}}$, $\hat{h} = h^{M_{G_2}}$ are fg-equal if a = h and $M_{G_1} =$

 M_{G_2} .

5- For fg-sets \hat{E} , \hat{H} generated by the same group G, \hat{E} is said to be fgsubset of \hat{H} ($\hat{E} \subseteq \hat{H}$) if every fg-element in \hat{E} is in \hat{H} . 6- The fg-union, fg-intersection of two fg-sets \hat{A} , \hat{E} generated by the same group are defined as follows: $\hat{C} = \hat{A} \cup \hat{E} = G^{M_{GA}} \cup (G^{M_{GE}}) = C^{M_Gc}, M_Gc = max\{M_{GA}, M_{GE}\}.$ and $\hat{C} = \hat{A} \cap \hat{E} = G^{M_{GA}} \cup (G^{M_{GE}}) = C^{M_Gc}, M_Gc = min\{M_{GA}, M_{GE}\}$

Example 3.3. Consider the group $G = (G, .) = \{1, -1, i, -i\}$. Define $M_G : G \to [0, 1], M_G = 0.2$, then $\hat{A} = \{1, -1, i, -i\}^{0.2}$ is fg-set.

Definition 3.4. Let G be a group. Then (G, τ_{fg}) is called a fuzzy group topological space (simply τ_{fg} -space) on \hat{H} (the maximum fg-set) if τ_{fg}) satisfies the following conditions :

(1) ϕ , H are in τ_{fg} ,

(2) The fg-union of any members of fg-sets in τ_{fg} belongs to τ_{fg} ,

(3) The fg-intersection of any two fg-sets in τ_{fg} belong to τ_{fg} ,

The fg- sets of τ_{fg} are called τ_{fg} -open sets and their complements are called τ_{fg} -closed sets.

Remark 3.5. If $\hat{U} \in \tau_{fg}$, the complement of fg-set $\hat{U} = \{G^{M_G} : M_G \in [0,1]\}$ is defined by: $\hat{U}^c = \{G^{1-M_G} : M_G \in [0,1]\}.$

Example 3.6. Let $G = \{1, -1\}, M_G : G \to [0, 1]$ and fg-sets are defined as follows: $\hat{A} = \{1, -1\}^1, \hat{C} = \{1, -1\}^{0.7}, \hat{H} = \{1, -1\}^{0.5}$. Then $\tau_{fg} = \{\hat{\phi}, \hat{A}, \hat{C}, \hat{H}\}$ is an element fuzzy group topology over $\hat{A}, \hat{A}^c = \{1, -1\}^0 = \hat{\phi}$.

Definition 3.7. An fg-set \hat{E} in fg-space (G, τ_{fg}) is called fg-neighborhood of fg-point \hat{a} in (G, τ_{fg}) if there is a fg-set \hat{H} in τ_{fg} such that $\hat{a} \in \hat{H} \subseteq \hat{E}$.

Definition 3.8. Let (G, τ_{fg}) be an fg-space and $\hat{A} \in \tau_{fg}$. Then the closure and interior of \hat{A} are defined by: $\hat{A}(\hat{A}) = \hat{A}(\hat{F}) + \hat{E}$ be an fact state $\hat{A} \in \hat{F}$ and $int(\hat{A}) = \hat{A}(\hat{F})$

 $\begin{array}{ll} cl(\hat{A}) = \hat{\cap}\{\hat{E} : \hat{E} & be \ an \ fgx- \ closed \ set \ in\tau_{fg}, \hat{A} \subseteq \hat{E}\} \ and \ int(\hat{A}) = \hat{\cup}\{\hat{E} : \hat{E} & be \ an \ fg- \ open \ set \ in\tau_{fg}, \hat{E} \subseteq \hat{A}\} \end{array}$

4 Dual Fuzzy Group Topology

Definition 4.1. Let G be a group if each element a in G associated to a membership function $M_G(a)$ where $M_G(a) : a \to [0,1]$, and G associated to membership function M_G where $M_G : G \to [0,1]$. Then the result set is said to be dual fuzzy group (denoted by dfg-set).

146

Three Types of Fuzzy Group Topological Spaces...

Remark 4.2. 1- The dfg-universal set $\check{U} = \{\check{a} : \check{a} = G_{\lambda}^{M_G(a_{\lambda})} : M_G(a_{\lambda}) =$ 1, for all $\lambda \in \omega$, $M_G = 1$.

2- The dfg-null set $\check{\phi} = \{\check{a} : \check{a} = G_{\lambda}^{M_G(a_{\lambda})} : M_G(a_{\lambda}) = 0, \text{ for all} \lambda \in \omega, M_G = 0\}$ 0}.

3- The fact that \hat{a} is an dfg-element of dfg-set \check{A} will be denoted by $\check{a} \in \check{A}$. 4- Two dfg-elements $\check{a} = a_{\lambda}^{M_G(a_{\lambda})}$ with $M_G = \delta$ and $\check{v} = v_{\lambda}^{M_G(v_{\lambda})}$ with $M_G = \gamma$ are dfg-equal if $a_{\lambda} = v_{\lambda}$ and $M_G(a_{\lambda}) = M_G(v_{\lambda})$ and $\delta = \gamma$.

5- For dfg-sets A, N generated by the same group G , A is said to be dfgsubset of \dot{N} ($\dot{A} \subseteq \dot{N}$) if every dfg-element in \dot{A} is in \dot{N} .

6- The dfg-union, dfg-intersection of two dfg-sets \check{A} , \check{B} generated by the same group where $\check{A} = \{\check{a}_{\lambda} : \check{a}_{\lambda} = a_{\lambda}^{M_{A}(a_{\lambda})}, \lambda \in \omega, M_{A} = \delta\}$ and $\check{B} = \{\check{a}_{\sigma} : \Delta \in \mathcal{A}\}$ $\check{a}_{\sigma} = a_{\sigma}^{M_B(a_{\sigma})}, \sigma \in \omega, M_A = \gamma \}$ are defined as follows:

 $\check{C} = \check{A}^{M_A} \check{\cup} \check{B}^{M_B} = \{\check{a}_{\rho} : \check{a}_{\rho} = a_{\rho}^{M_c(a_{\rho})}, \rho \in \omega\} M_c(a_{\rho}) = max\{M_G a_{\lambda}, M_G a_{\sigma}\},$ and $M_c = max\{M_A, M_B\}$.

 $\check{C}^{M_C} = \check{A}^{M_A} \check{\cap} \check{B}^{M_B} = \{\check{a}_{\rho} : \check{a}_{\rho} = a_{\rho}^{M_c(a_{\rho})}, \rho \in \omega\} M_c(a_{\rho}) = \min\{M_G a_{\lambda}, M_G a_{\sigma}\},$ and $M_c = \min\{M_A, M_B\}$.

Example 4.3. Consider the group $G = (G, .) = \{1, -1, i, -i\}$. Define $M_G(x): G \to [0,1], \text{ for all } x \in G, \text{ and}$

$$M_G(x) = \begin{cases} 0.2, & x = 1\\ 0.4, & x = -1\\ 0.5, & x = \pm i \end{cases}$$

and $M_G = 0.8$. Then $\check{G} = \{1^{0.2}, -1^{0.4}, i^{0.5}, -i^{0.5}\}^{0.8}$ is dfg-set.

Definition 4.4. Let G be a group. Then (G, τ_{dfg}) is called a dual fuzzy group topological space (simply au_{dfg} -space) on A (the maximum dfg-set) if τ_{dfg} satisfies the following conditions:

 $(1)\phi, A \text{ are in } \tau_{dfg},$

(2) The dfg-union of any members of dfg-set in τ_{dfg} belongs to τ_{dfg} ,

(3) The dfg-intersection of any two dfg-set in τ_{dfg} belong to τ_{dfg} ,

The dfg-sets of τ_{dfg} are called τ_{dfg} -open sets, their complements are called τ_{dfa} -closed sets.

Remark 4.5. If $\check{U} \in \tau_{dfg}$, the complement of dfg-set $\check{U} = \{\check{a} = a_{\lambda}^{M_G(a_{\lambda})} \quad with \quad M_G = \gamma\}$ is defined by: $\check{U}^c = \{\check{a}^c : \check{a}^c = a_{\lambda}^{1-M_G(a_{\lambda})}, \lambda \in \omega \quad with \quad M_G = 1 - \gamma, \gamma \in [0, 1]\}.$

Example 4.6. Let $G = (G, .) = \{1, -1\}$ and dfg-set are defined as follows: $\check{U} = \{1^1, -1^1\}^1, \; \check{N} = \{1^{0.3}, -1^{0.5}\}^{0.4}, \; \check{E} = \{1^{0.6}, -10.7\}^{0.8} \; Then \; \tau_{dfg} = 10^{-10}$ $\{\check{\phi},\check{U},\check{N},\check{E}\}\$ is a dual fuzzy Group Topology over \check{U} , $\check{N}^c = \{1^{0.7}, -1^{0.5}\}^{0.6}$.

Definition 4.7. A df g-set \check{A} in df g-topology (G, τ_{dfg}) is called df g-neighborhood of df g-point \check{a} in (G, τ_{dfg}) if there is a df g-set \check{N} in τ_{dfg} such that $\check{a} \in \check{N} \subseteq \check{A}$.

Definition 4.8 Let (G, τ_{dfg}) be a dfg-topological space and A in τ_{dfg} , then the closure and interior of \check{A} are defined by: $cl(\check{A}) = \check{\cap}\{\check{N} : \check{N} \text{ be dfg-closed set in } \tau_{dfg}, \check{A} \subseteq \check{N}\}$ and $int(\check{A}) = \check{\cup}\{\check{N} : \check{N} \text{ be dfg-open set in } \tau_{dfg}, \check{N} \subseteq \check{A}\}$

5 Comparison between Types of Fuzzy Group Topologies

Definition 5.1 (2). A crisp (or classical) set $V \subseteq A$ is a set characterized by the function $\chi_V : A \to 0, 1$ called the characteristic function and V is defined by $V = \{x \in A | \chi(x) = 0 \quad ifx \notin V, \chi(x) = 1 \quad ifx \in V\}.$

Lemma 5.2. Every fuzzy group set considered as a special case of the dual fuzzy group set.

Proof. From the dual fuzzy group set definition. Let U be dfg-set, define a group G, the group G associated to a membership function $M_G : G \to$ [0,1], each element x in G associated to a membership function $M_G(x)$ where $M_G(x) : x \to [0,1]$, for all $x \in G$. Suppose $M_G(x) = 1$ for all $x \in G$ (as a special case) then the resulting set is fuzzy group set.

Lemma 5.3. Every element fuzzy group set considered as a special case of the dual fuzzy group set.

Proof. From the dual fuzzy group set definition let A be a dfg-set define a group G, each element x in G associated to a membership function $M_G(x)$ where $M_{x\in G} : x \to [0,1]$, for all $x \in G$, the group G associated to a membership function $M_G : G \to [0,1]$, suppose $M_G = 1$ (as a special case) then the resulting set is element fuzzy group set.

Remark 5.4. 1- Dual fuzzy group set is not necessary element fuzzy group set.

- 2- Fuzzy group set is not necessary element fuzzy group set.
- 3- Element fuzzy group set is not necessary fuzzy group set.
- 4- Each element fuzzy group set is dual fuzzy group set.
- 5- Each fuzzy group set is dual fuzzy group set.
- 6- Dual fuzzy group set is not necessary fuzzy group set.

Three Types of Fuzzy Group Topological Spaces...

Example 5.5. 1- Let $G = (G, .) = \{1, -1\}$, and $M_G = 0.7$. Consider dfgset $\check{A} = \{1^{0.5}, -1^{0.2}\}^{0.7}$. Then \check{A} is not fgx-set since $M_G \neq 1$. 2- Consider $G = (\mathbb{C}, +)$ be a commutative group with $M_i(G) : G \rightarrow [0, 1]$, $M_G = 0.5$. Then the result fg-set is not fgx-set since $M_G \neq 1$. 3- Consider $G = (\mathbb{R}, +)$ be a commutative group with $M_i(G)(x) : x \rightarrow [0, 1]$, $M_G(x) = 0.57$ for all $x \in G$. Then the resulting fgx-set is not fg-set since $M_G(x) \neq 1$ for all $x \in G$. 4- Let $G = (G, .) = \{1, -1\}$, fgx-set $\tilde{A} = \{1^{0.5}, -1^{0.2}\}$. Then \tilde{A} is dfg-set since the membership of G is 1. 5- Let $G = (G, .) = \{1, -1\}$, fg-set $\hat{A} = \{1, -1\}^{0.023}$. Then \hat{A} is dfg-set since the member ship of each element in G is 1. 6- From (1) \check{A} is dfg-set but not fg-set.

Theorem 5.6. Every element fuzzy group topological space is dual fuzzy group topological space.

Proof. From Lemma 5.3.

Dual fuzzy group topological space need not be element fuzzy group topological space, consider the following example.

Example 5.7. $G = (G, .) = \{1, -1\}$, dfgx-sets are defined as follows: $\check{U} = \{1^1, -1^1\}^1$, $\check{N} = \{1^{0.5}, -1^{0.5}\}^{0.6}$, $\check{E} = \{1^{0.7}, -1^{0.8}\}^{0.9}$, $\tau_{dfg} = \{\check{\phi}, \check{U}, \check{N}, \check{E}\}$ is a dual fuzzy group topology but not an element fuzzy group topological space since $M_G \neq 1$, for each dfg-open.

Remark 5.8. 1- Fuzzy group topological space need not be element fuzzy group topological space.

2- Element fuzzy group topological space need not be fuzzy group topological space.

Example 5.9. 1- Consider $G = (\mathbb{C}, +)$ be a commutative group with M_G : $G \to [0,1]$, $M_G = 0.5$. Then the resulting fuzzy group set is not element fuzzy group set since $M_G \neq 1$.

2- Consider $G = (\mathbb{R}, +)$ be a commutative group with $M_{(G)}(x) : x \to [0, 1]$, $M_{G}(x) = 0.57$ for all $x \in G$. Then the resulting element fuzzy group set is not fuzzy group set since $M_{G}(x) \neq 1$, for all $x \in G$.

Theorem 5.10. Every fuzzy group topological space is dual fuzzy group topological space.

Proof. The sesult follows since every fuzzy group set is a dual fuzzy group set. \Box

Remark 5.11. Dual fuzzy group topological space need not be fuzzy group topological space

Example 5.12. $G = (G, .) = \{1, -1\}$, dfgx-sets are defined as follows: $\check{U} = \{1^1, -1^1\}^1$, $\check{N} = \{1^{0.5}, -1^{0.5}\}^{0.6}$, $\check{E} = \{1^{0.7}, -1^{0.8}\}^{0.9}$, $\tau_{dfg} = \{\check{\phi}, \check{U}, \check{N}, \check{E}\}$ is a dual fuzzy group topology but not an element fuzzy group topological space since $M_G \neq 1$ for each dfg-open set in τ_{dfg} .

Acknowledgment. The authors are grateful to the Middle East University, Amman, Jordan for the financial support granted to cover the publication fee of this research article.

References

- D. H. Foster, Fuzzy topological groups, J. Math. Anal. Appl., 67, no. 2, (1979), 549–564.
- [2] I. A. Onyeeozili, D. Singh, A study of the concept of soft set theory and survey of its literature, ARPN Journal of Science and Technology, 3, no. 1, (2013), 61–68.
- [3] Chun-hai Yu, Ji-liang Ma, Fuzzy Topological Groups, Fuzzy Sets and Systems, 12, (1984), 289–299.
- [4] Chun-hai Yu, Ji-liang Ma, On Fuzzy Topological Groups, Fuzzy Sets and Systems, 23, no. 2, (1987), 281–287.

150