Root elements and root subgroups in $E_{6}(K)$ for fields K of characteristic two

Abdulkareem Alhuraiji, Mashhour Al-Ali Bani-Ata
Mathematics Department
The Public Authority for Applied Education and Training (PAAET)
Adailiyah, Kuwait

email: abdulkaremalhuraiji@gmail.com, mashhour_ibrahim@yahoo.com
(Received May 13, 2023, Accepted August 25, 2023,
Published August 31, 2023)

Abstract

The purpose of this article is to give an elementary description of the root elements and the root subgroups of the Chevalley group E of type $E_{6}(K)$ in fields K of characteristic two. We show that there is a bijection between the root subgroups of E_{6} and the family V_{6} of all 6 -dimensional submodules of the 27 -dimensional module E_{6} over K. Then we give a construction of the stabilizer of a 6 -dimensional Tits subspace in V_{6} which is the maximal parabolic subgroup P_{6} in $E_{6}(K)$.

1 Introduction

Subgroups of the group $E_{6}(q), q=p^{a}, p \geq 5$, which are generalized by root-subgroups were considered by Cooperstein [13]. In [3], a brief description of the groups $E_{6}(K),{ }^{2} E_{6}(K)$ and $F_{4}(K)$ was given, where the root involutions and root subgroups were defined. For more information about Lie algebras of type E_{6} and their adjoint Chevalley groups, one may refer to [1,3,4,5,7,8,11,12].

It is remarkable to mention that most of the available literature on Lie algebras and Chevalley groups does not deal with fields of characteristic two.

Key words and phrases: Root-elements, root-subgroups, Chevalley group, generalized quadrangle.
AMS (MOS) Subject Classifications: 17A74, 17A45.
The corresponding author is Mashhour Al-Ali Bani-Ata.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Hence this study provides a new interpretation of root system and root subgroups. Such interpretations are useful since they may lead to new insights and more efficient ways of computation concerning finite simple groups of Lie type.

2 Notations and general setup

Consider a 6-dimensional vector space V over the Galois field $\mathbb{F}_{\notin ~}$ endowed with a non-degenerate quadratic form of minimal Witt-index. Let $(v \mid \omega)=$ $Q(v+\omega)+Q(v)+Q(\omega)$ be the associated bilinear form to Q on V. Let $\mathbb{B}=\{0 \neq x \in V \mid Q(x)=0\}$ be the set of points and $\mathcal{L}=\{L<V \mid \operatorname{dim} L=2$ and $Q(L)=0\}$ be the set of lines and the set of non-singular vectors s of V are the exterior points. The order of \mathbb{B} is 27 and the order of \mathcal{L} is 45 . The pair $(\mathbb{B}, \mathcal{L})$ is the generalized quadrangle of type $\mathrm{O}_{6}^{-}(2)$ and the Weyl group $W=\left\{g \in G L(V) \mid Q\left(x^{g}\right)=Q(x) \forall x \in V\right\}$. This group is a 3-transposition group generated by 36 reflections σ_{s}, s is an exterior point and $v^{\sigma_{s}}=v+(v \mid s) s$ for $v \in V$. For these observatations see [2].

Remark 2.1. If Δ is a root base, then $s=s_{\Delta}=\sum_{x \in \Delta} x$ is an exterior point, and $\Delta^{*}=s_{\Delta}+\Delta$ is also a root base. We call Δ and Δ^{*} corresponding root bases.

Moreover, we denote by Δ_{0} the set of all points which are orthogonal to s_{Δ}, so that $\mathbb{B}=\Delta \cup \Delta^{*} \cup \Delta_{0}$.
Definition 2.1. Let K be a field of characteristic 2 and let A be a vector space over K with basis $\left\{e_{x} \mid x \in B\right\}$.
Definition 2.2. For a root base Δ and $k \in K$, define the root-elements (Chevalley generators) $r_{\Delta}(k) \in G L(A)$ by

$$
e_{x}^{r_{\Delta}(k)}= \begin{cases}e_{x}+k e_{x}^{\sigma_{\Delta}} & , x \in \Delta \\ e_{x} & , \quad \text { otherwise }\end{cases}
$$

Definition 2.3. The commutator $\left[A, r_{\Delta}(k)\right]$ is defined by,

$$
\left[A, r_{\Delta}(k)\right]=\left\langle e_{x}+e_{x}^{r_{\Delta}(k)} \mid x \in \mathbb{B}\right\rangle .
$$

It is clear that $\left[A, r_{\Delta}(k)\right]=\left\langle e_{y} \mid y \in \Delta^{*}\right\rangle$ is of dimension 6 , if $k \neq 0$.
Definition 2.4. For a root base Δ, the corresponding root-subgroup U_{Δ} $=U_{\Delta}(K)=\left\{r_{\Delta}(k) \mid k \in K\right\}$. The group generated by all root-subgroups is denoted by $\mathbb{E}(K)$ or simply \mathbb{E}.

Definition 2.5. Define a quadratic map \mathbb{Q} from A into A by $\hat{Q}(a)=\sum_{x \in \mathbb{B}} Q_{x}(a) e_{x}$, where Q_{x} is the quadratic form on A defined as

$$
Q_{x}(a)=\sum_{\{x, y, z\} \in \mathfrak{L}} a_{y} a_{z}, \text { with } a=\sum_{x \in \mathbb{B}} a_{x} e_{x}
$$

Lemma 2.1. [3] The group $\mathbb{E}=\mathbb{E}(K)$ module its center is isomorphic to the Chevalley group $E_{6}(K)$ or simply E_{6}.

Remark 2.2. The 27-dimensional vector space A over K with basis $\left\{e_{x} \mid x \in\right.$ $\Omega\}$ can be turned into a commutative, non-associative algebra. For $x, y \in \Omega$, set

$$
e_{x} e_{y}= \begin{cases}e_{x+y} & , \quad x \neq y \text { and }(x \mid y)=0 \\ 0, & \text { otherwise } .\end{cases}
$$

Definition 2.6. Define the inner product $\langle\mid\rangle$ on A by: $\left\langle e_{i} \mid e_{j}\right\rangle= \begin{cases}1 & , i=j \\ 0 & , \text { otherwise }\end{cases}$ and define a symmetric trilinear form T on A by

$$
T\left(e_{x}, e_{y}, e_{z}\right)= \begin{cases}1 & , \quad\{x, y, z\} \in \mathfrak{L} \\ 0 & , \quad \text { otherwise }\end{cases}
$$

In Particular, $T(a, b, c)=\langle a b \mid c\rangle=\langle a \mid b c\rangle$ for all $a, b, c \in A$.
Proposition 2.1. [10]

1. $\hat{Q}(k a)=k^{2} \hat{Q}(a)$ for $k \in K$ and $a \in A$.
2. $\hat{Q}\left(e_{x}\right)=0$ for points x.
3. $a b=\hat{Q}(a+b)-\hat{Q}(a)-\hat{Q}(b)$ for $a, b \in A$.

Remark 2.3. [10] If $G=\left\{g \in G L(A) \mid T\left(a^{g}, b^{g}, c^{g}\right)=T(a, b, c) \forall a, b, c \in A\right\}$,
then

$$
G=\left\{g \in G L(A) \mid a^{g} b^{g}=(a b)^{g^{*}} \forall a, b, c \in A\right\}
$$

where g^{*} is the transposed inverse of g with respect to basis $e_{x}, x \in \mathbb{B}$.
Definition 2.7. Let $G_{0}=\left\{g \in G L(A) \mid \hat{Q}\left(a^{g}\right)=\hat{Q}(a)^{g^{*}} \forall a \in A\right\}$.
Theorem 2.1. [10] $\mathbb{E} \leq G_{0} \leq G$.

3 Root elements and root subgroups

Now, we introduce a new definition for root subgroups of \mathbb{E} and we show that the two notions are equivalent.
Definition 3.1. Let $a, b \in A$ where $a=\sum_{x \in \mathbb{B}} a_{x} e_{x}, b=\sum_{x \in \mathbb{B}} b_{x} e_{x}$. Then the inner product $\langle a \mid b\rangle$ of a and b is defined as $\langle a \mid b\rangle=\sum_{x \in \mathbb{B}} a_{x} b_{x}$.
Definition 3.2. Let $a, b \in A$ with $\hat{Q}(a)=\hat{Q}(b)=0$ and $\langle a \mid b\rangle=0$. For such a, b, define $t_{a, b}$ by $z^{t_{a, b}}=z+(z a) b+\langle z \mid b\rangle a$ for $z \in A$.
Definition 3.3. Let V_{6} be the family of all singular subspaces of A of dimension 6 ; i.e., $V_{6}=\{U \leq A \mid \operatorname{dim}(U)=6$ and $\hat{Q}(U)=0\}$. We define the root-subgroups in the following way:
For $U \in V_{6}$, define $R_{U}=\left\{g \in\langle \rangle \mid[A, g] \leq U \leq C_{A}(g)\right\}$.
Proposition 3.1. Let Δ be a root base and $U=\left\langle e_{x} \mid x \in \Delta\right\rangle$ and let $t \in \mathbb{E}$ such that $[A, t]=U<C_{A}(t)$. Then $t=r_{\Delta^{*}}(k)$ for some $0 \neq k \in K$ and any $r_{\Delta^{*}}(k), k \neq 0$, has this property.

Proof. For all $x \in \Delta$ and for all $y \in \mathbb{B}, e_{x}^{t}=e_{x}$ and $e_{y}^{t}=e_{y}+u_{y}$ for some $u_{y} \in U$ as $[A, t]=U$. Hence if $y \in \Delta^{*}$, then $e_{y}^{t}=e_{y}+u_{y}$ and $e_{y} u_{y}=\hat{Q}\left(e_{y}+u_{y}\right)=\hat{Q}\left(e_{y}^{t}\right)=\hat{Q}\left(e_{y}\right)^{t^{*}}=0^{t^{*}}=0$, using Proposition 2.1 and Theorem 2.1.
Let $u_{y}=\sum_{z \in \Delta} k_{z} e_{z}$, then $0=e_{y} u_{y}=\sum_{z} k_{z} e_{y} e_{z}=\sum_{z \neq y^{\sigma}} k_{z} e_{y+z}$, and hence, $u_{y}=k_{y} e_{y^{\sigma}}$, where σ is the reflection corresponding to s_{Δ}. Also, if $y_{1}, y_{2} \in$ $\Delta^{*}, y_{1} \neq y_{2}$, then $\left(e_{y_{1}}+k_{y_{1}} e_{y_{1}^{\sigma}}\right)\left(e_{y_{2}}+k_{y_{2}} e_{y_{2}^{\sigma}}\right)=e_{y_{1}}^{t} t_{y_{2}}^{t}=\left(e_{y_{1}} e_{y_{2}}\right)^{t^{*}}=0$, which implies $0=k_{y_{1}} e_{y_{1}^{\sigma}} e_{y_{2}}+k_{y_{2}} e_{y_{1}} e_{y_{2}^{\sigma}}=\left(k_{y_{1}}+k_{y_{2}}\right) e_{y_{1}+y_{2}+s_{\Delta}}$, from which it follows that $k_{y_{1}}=k_{y_{2}}$. Hence, $e_{x}^{t}=e_{x}$ for all $x \in \Delta$, and $e_{y}^{t}=e_{y}+k e_{y^{\sigma}}$ for $y \in \Delta^{*}$. It remains to discuss the case $z \in \Delta_{0}$ which implies $z=x+y+s$ for $x, y \in \Delta, x \neq y$. For $y_{1} \in \Delta \backslash\{x, y\}$, it follows that $\left\langle y_{1}+s \mid x+y+s\right\rangle=$ $\left\langle y_{1} \mid x+y+s\right\rangle=1$ which implies $e_{y_{1}+s} \cdot e_{z}=0$. As $e_{z}^{t}=e_{z}+u_{z}$ and $e_{y_{1}+s}^{t}=e_{y_{1}+s}+k e_{y_{1}}$ as $y_{1}+s \in \Delta^{*}$, we have

$$
\begin{aligned}
\left(e_{z}+u_{z}\right)\left(e_{y_{1}+s}+k e_{y_{1}}\right) & =e_{z}^{t} e_{y_{1}+s}^{t}=\left(e_{z} e_{y_{1}+s}\right)^{t^{*}}=0 \\
& =k e_{z} e_{y_{1}}+u_{z} e_{y_{1}+s}=u_{z} e_{y_{1}+s} \quad \text { as }\left\langle y_{1} \mid z\right\rangle=\left\langle y_{1}+s \mid z\right\rangle=1 .
\end{aligned}
$$

If $u_{z}=\sum_{x \in \Delta} k_{x} e_{x}$, then $0=e_{y_{1}+s} u_{z}=\sum_{x \in \Delta} k_{x} e_{y_{1}+s} e_{x}=\sum_{x \neq y_{1}} k_{x} e_{y_{1}+x+s}$ which implies $k_{x}=0$ for all $x \neq y_{1}$. For $y_{1} \neq x, y, u_{z}=k_{y_{1}} e_{y_{1}}$. Take another y_{1}^{\prime}.

Then $u_{z}=k_{y_{1}^{\prime}} e_{y_{1}^{\prime}}$ which implies $u_{z}=0$. Hence $t=r_{\Delta^{*}}(k)$ for some $k \in K$. The converse holds by Definition 2.6.

Corollary 3.1. The two definitions of root-subgroups are equivalent.
Proof. There is a bijection between the root subgroups and V_{6}; i.e., a map sends the root-subgroup U_{Δ} to $\left[A, U_{\Delta}\right] \in V_{6}$. The above proposition shows that

$$
\left\{g \in\rangle|[A, g] \leq U \leq C_{A}(g)\right\}=\left\{r_{\Delta}^{*}(k) \mid k \neq 0\right\}
$$

As \mathbb{E} is transitive on V_{6}, the claim follows using [9, Theorem 2.1].
Lemma 3.1. Let $g \in \mathbb{E} \leq G_{0}$. Then $t_{a, b}^{g}=t_{a^{g}, b^{s^{*}}}$.
Proof. Consider

$$
\begin{aligned}
z^{g^{-1}\left(t_{a, b}\right) g} & =\left(z^{g^{-1}}+\left(z^{g^{-1}} a\right) b+\left\langle z^{g^{-1}} \mid b\right\rangle a\right)^{g}=z+\left(\left(z^{g^{-1}} a\right) b\right)^{g}+\left\langle z \mid b^{g^{*}}\right\rangle a^{g} \\
& =z+\left(z a^{g}\right) b^{g^{*}}+\left\langle z \mid b^{g^{*}}\right\rangle a^{g} \text { as }\left(\left(z^{g^{-1}} a\right) b\right)^{g}=\left(z^{g^{-1}} a\right)^{g^{*}} b^{g^{*}}=\left(z a^{g}\right) b^{g^{*}}
\end{aligned}
$$

Hence the claim follows.
Lemma 3.2. Let $e_{p}, b \in A$ for $p \in \mathbb{B}$ with $\hat{Q}\left(e_{p}\right)=\hat{Q}(b)=0,\left\langle e_{p} \mid b\right\rangle=$ 0 , and $b=b_{0}+b_{1}$ where $b_{0} \in A_{0}(p)$ and $b_{1} \in A_{1}(p)$. Then $\left[A, t_{e_{p}, b}\right]=$ $\left[A, t_{e_{p}, b_{1}}\right]=\left\langle e_{p}\right\rangle+\left(e_{p} A\right) b_{1} \in V_{6}$, where $A_{0}(p)=\left\langle e_{x} \mid(p \mid x)=0\right\rangle$ and $A_{1}(p)=$ $\left\langle e_{x} \mid(p \mid x)=1\right\rangle$.
Proof. As $\left\langle e_{p} \mid b\right\rangle=0$ and as $\hat{Q}(b)=0$, it follows that $0=\hat{Q}\left(b_{0}+b_{1}\right)=$ $\hat{Q}\left(b_{0}\right)+\hat{Q}\left(b_{1}\right)+b_{0} b_{1}$, which implies $\hat{Q}\left(b_{0}\right)=0, \hat{Q}\left(b_{1}\right)=0, b_{0} b_{1}=0$ as $\hat{Q}\left(b_{0}\right) \in\left\langle e_{p}\right\rangle, \hat{Q}\left(b_{1}\right) \in A_{0}(p), b_{0} b_{1} \in A_{1}(p)$.
Let $x \in \mathbb{B}$. Then $e_{x}^{t_{e_{p}, b}}=e_{x}+\left(e_{x} e_{p}\right) b+\left\langle e_{x} \mid b\right\rangle e_{p}=e_{x}+\left(e_{x} e_{p}\right) b+b_{x} e_{p}$ where $b_{x}=\left\langle e_{x} \mid b\right\rangle$. Set $t=t_{e_{p}, b}$. Hence $e_{p}^{t}=e_{p}$. If $(x \mid p)=1$, then $e_{x}^{t}=e_{x}+0$. $b+b_{x} e_{p}=e_{x}+b_{x} e_{p}$. If $(x \mid p)=0$, then $e_{x}^{t}=e_{x}+e_{x+p}\left(b_{0}+b_{1}\right)+b_{x} e_{p}=$ $e_{x}+e_{x+p} b_{1}+e_{x+p} b_{0}+b_{x} e_{p}=e_{x}+e_{x+p} b_{1}$ as $e_{x+p} b_{0}+b_{x} e_{p}=0$. Because $b_{0}=\sum_{(y \mid p)=0} k_{y} e_{y}$, we have $e_{x+p} b_{0}=\sum_{(y \mid p)=0} k_{y} e_{x+p} e_{y}$
$=k_{x} e_{x+p} e_{x}=k_{x} e_{p}=b_{x} e_{p}$. Hence, $t_{e_{p}, b}=t_{e_{p}, b_{1}}$ and $t_{e_{p}, b}=I$ if and only if $b_{1}=0$. If $b_{1} \neq 0$, then $\left[A, t_{e_{p}, b_{1}}\right]=\left\langle e_{p}\right\rangle+\left(e_{p} A\right) b_{1}=\left\langle e_{p}\right\rangle+\left(e_{p} A\right) b$, and $\left\langle e_{p}\right\rangle+\left(e_{p} A\right) b_{1} \in V_{6}$ as it is conjugate under $\operatorname{Levi}(p)$ to $\left\langle e_{p}\right\rangle+\left(e_{p} A\right) e_{w}$ for $w \in \mathbb{B}$ with $(p, w)=1$, where $\operatorname{Levi}(p)=\left\{r_{\Delta}(k) \mid k \neq 0,(p, s)=0\right\}$. Hence the claim obtains.

Lemma 3.3. The subspace $\left[A, t_{a, b}\right]=\langle a\rangle+(a A) b \in V_{6}$, where $a, b \in A$, $\hat{Q}(a)=\hat{Q}(b)=\langle a \mid b\rangle=0$.

Proof. As E is transitive on $V_{6}[9]$, then there exists $g \in \mathbb{E} \leq G_{0}$ with $a^{g}=e_{p}$ for $p \in \mathbb{B}$ and hence $t_{a, b}^{g}=t_{a^{g}, b^{g^{*}}}=t_{e_{p}, c}$ where $c=b^{g^{*}}$. Hence $t_{a, b}=I$ or $t_{a, b} \neq I$ and $\left[A, t_{a, b}\right]^{g}=\left[A, t_{a^{g}, b^{*}}\right]=\left[A, t_{a^{g}, c}\right]$ by Lemma 3.1 and Lemma 3.2. This implies
$\left[A, t_{a^{g}, c}\right]=\left\langle e_{p}\right\rangle+\left(e_{p} A\right) c=\left\langle a^{g}\right\rangle+\left(a^{g} A\right) b^{g^{*}}=\left\langle a^{g}\right\rangle+((a A) b)^{g}$ or $\left[A, t_{a, b}\right]=$ $\langle a\rangle+(a A) b \in V_{6}$. Hence the claim follows.

Theorem 3.1. The set $\left\{t_{a, b} \neq I \mid \hat{Q}(a)=\hat{Q}(b)=0,\langle a \mid b\rangle=0\right\}$ forms a conjugacy class $r_{\Delta}(1)^{\mathbb{E}}$ in \mathbb{E} containing all root elements $r_{\Delta}(k), k \neq 0$, and each root element in \mathbb{E} can be written as $t_{a, b}$ for suitable elements $a, b \in A$.

Proof. In Lemma 3.2 it has been shown that any such element $t_{a, b} \neq I$ is conjugate to an element $t_{e_{p}, e_{w}}$ for $p, w \in \mathbb{B}$ with $(p, w)=1$, and $t_{e_{p}, e_{w}}=\sigma_{p+w}$ is conjugate to $r_{\Delta}(1)$ for a root base Δ with $s_{\Delta}=p+w$. In a matrix form, $\sigma_{s_{\Delta}}=\left[\begin{array}{ccc}I & I & 0 \\ 0 & I & 0 \\ 0 & 0 & I\end{array}\right]$ and $\sigma_{p+w}=\left[\begin{array}{ccc}0 & I & 0 \\ I & 0 & 0 \\ 0 & 0 & I\end{array}\right]$.

In other words, $\left\{t_{a, b} \neq I \mid \hat{Q}(b)=\hat{Q}(a)=\langle a \mid b\rangle=0\right\}$ is a conjugacy class $r_{\Delta}(1)^{\mathbb{E}}$, in \mathbb{E} containing the root-element $r_{\Delta}(k), k \neq 0$. Hence the claim rsults.

Remark 3.1. K admits an automorphism of order 2, written as $x \longrightarrow \bar{x}$. For $a=\sum_{x \in \mathbb{B}} a_{x} e_{x} \in A$, set $\bar{a}=\sum_{x \in \mathbb{B}} \bar{a}_{x} e_{x}$, and define the unitary from $(a \mid b)=\langle a \mid \bar{b}\rangle$ on A.
Define $U=\left\{g \in G_{0} \mid g\right.$ preserves the unitary form; i.e., $g^{*}=\bar{g}$ where $\left.g^{*}=\left(g^{t}\right)^{-1}\right\}$.
Then $U / Z(U)$ is the simple group ${ }^{2} E_{6}(\bar{K})$. If $K=\mathbb{F}_{q^{2}}$, then $\bar{x}=x^{q}$, q is a power of a prime.

For $a \in A$ with $\hat{Q}(a)=0$ and $(a \mid a)=0=\langle a \mid \bar{a}\rangle$, set $t_{a}=t_{a, \bar{a}}$. Then t_{a} is a root element or I. If $g \in U$, then $t_{a}^{g}=t_{a^{g}}$ as $t_{a}^{g}=\left(t_{a, \bar{a}}\right)^{g}=t_{a^{g}, \bar{a}^{g^{*}}}=$ $t_{a^{g}, \bar{a}_{\overline{9}}}=t_{a^{g}}$, this implies that $t_{a} \in U$ and the set $\left\{t_{a} \neq I \mid \hat{Q}(a)=0=(a \mid a)\right\}$ are the long root elements in ${ }^{2} E_{6}(\bar{K})$.

Definition 3.4. Let X be a coclique in \mathbb{B} and $A(x)=\left\langle e_{x} \mid x \in X\right\rangle$. Let $N_{\mathbb{E}}(A(X))$
be the stabilizer of $A(X)$ in \mathbb{E} and $H(A(X))=\left\langle r_{\Delta}(k) \mid r_{\Delta}(k) \in N_{\mathbb{E}}(A(X))\right\rangle$ $=\left\langle U_{\Delta} \mid U_{\Delta} \leq N_{\mathbb{E}}(A(X))\right\rangle$, where Δ is a root base.

Proposition 3.2. [1] The group $H(A(X))$ is the semidirect product $R \rtimes L$, where
$L=\left\langle r_{\Delta}(k)\right| s_{\Delta}=x+y$ for $\left.x, y \in X\right\rangle$ called the Levi-complement and $R=\left\langle r_{\Delta}(k) \mid \Delta \cap X=\emptyset\right\rangle$ called the unipotent radical.

Theorem 3.2. Let Δ be a root base and $U=A(\Delta)=\left\langle e_{x} \mid x \in \Delta\right\rangle$.
If $H=H(A(\Delta))=R \rtimes L \leq N_{\mathbb{E}}(A(\Delta))$, then

1. $\left(A\left(\Delta^{*}\right)\right)^{H}=A\left(\Delta^{*}\right)^{R}$, where $\Delta^{*}=\Delta^{\sigma_{s}}, s=s_{\Delta}$.
2. R acts regularly on $A\left(\Delta^{*}\right)$; that is, $N_{R}\left(A\left(\Delta^{*}\right)\right)=I$.
3. If $|K|=q$, then $H \cong q^{1+20} \rtimes S L_{6}(q)$ the maximal parabolic subgroup P_{6} in $E_{6}(K)$.

Proof. R acts trivially on $A(\Delta)$ and leaves the sequence $0<A(\Delta)<A(\Delta \cup$ $\left.\Delta_{0}\right)<A$ invariant. Hence $A\left(\Delta^{*}\right)^{H}=A\left(\Delta^{*}\right)^{R}$ as L stabilizes $A\left(\Delta^{*}\right)$. So it remains to show that $N_{R}\left(A\left(\Delta^{*}\right)\right)=I$. Let $g \in N_{R}\left(A\left(\Delta^{*}\right)\right)$. This implies that $e_{x}^{g}=e_{x}, \forall x \in \Delta$ and also
$e_{x}^{g}=e_{x}, \forall x \in \Delta^{*}$, because if $x \in \Delta^{*}$, then $e_{x}^{g}-e_{x} \in A\left(\Delta \cup \Delta_{0}\right) \cap A\left(\Delta^{*}\right)=0$ or $e_{x}^{g}=e_{x}$ as $[A, R] \leq A\left(\Delta \cup \Delta_{0}\right)$. If $z \in \Delta_{0}$, then $z=x+y=s_{\Delta}, x, y \in$ $\Delta, x \neq y$. If $y_{1} \in \Delta \backslash\{x, y\}$, then $\left(y_{1} \mid z\right)=\left(y_{1}+s \mid s\right)=0$ and $e_{z}^{g}=e_{z}+u$ for some $u \in A(\Delta)$. Hence $e_{y_{1}+s_{\Delta}}\left(e_{z}+u\right)=e_{y_{1}+s_{\Delta}}^{g} e_{z}^{g}=\left(e_{y_{1}+s_{\Delta}} e_{z}\right)^{g^{*}}=0$. This implies $0=e_{y_{1}+s_{\Delta}}\left(e_{z}+u\right)=e_{y_{1}+s_{\Delta}} u$. Hence $e_{y_{1}+s_{\Delta}} u=0, \forall y_{1} \in \Delta \backslash\{x, y\}$, which implies $u=0$. Hence $g=I$. This proves (1) and (2).

Let $R_{0}=\left\{\Delta^{*}\right\}$ and R_{1} be the set of all root bases Γ such that $\left|\Gamma \cap \Delta^{*}\right|=3$. By [2, Corollary 6.2], $\left|\Delta^{*} \cap \Gamma\right|=3$ if $|\Delta \cap \Gamma|=\emptyset$. This implies that $\left|R_{1}\right|=$ $\binom{6}{3}=20$ and $R=\left\{r_{\Gamma}(k) \mid \Gamma \in R_{0} \cup R_{1}, k \in K\right\}$. Hence, the unipotent radical $R \cong K^{1+20}$. The Levi-complement L leaves $A(\Delta), A\left(\Delta^{*}\right)$ and $A\left(\Delta_{0}\right)$ invariant and acts faithfully on $A(\Delta)$, induces $S L(A(\Delta)) \cong S L_{6}(K)$ on $A(\Delta)$. As R acts regularly on $A\left(\Delta^{*}\right)$ and if $|K|=q$ a power of prime, then $\left|\left(A\left(\Delta^{*}\right)\right)^{H}\right|=\left|\left(A\left(\Delta^{*}\right)\right)^{R}\right|=|R|=q^{1+20}$. Hence $H(A(\Delta))=q^{1+20} \rtimes S L_{6}(q)$, which is the maximal parabolic subgroup P_{6} in $E_{6}(q)$. This proves (3).

Remark 3.2. The space $A(\Delta)$ of dimension 6 is called a Tits subspace in V_{6} and the group $H(A(\Delta))$ computed above is a Borel subgroup of $E_{6}(K)$, that is the stabilizer of $A(\Delta)$ in $E_{6}(K)$.

4 Acknowledgment

The authors thank the Public Authority for Applied Education and Training for supporting the research project no BE-21-07.

References

[1] A. Alazemi, M. Bani Ata, On construction of the maximal parabolic subgroup P_{1} of $E_{6}(K)$ for fields K of characteristic two, J. Lie Theory, 27, (2016), 1107-1118.
[2] S. Aldhafeeri, M. Bani Ata, On the construction of Lie-algebras of type $E_{6}(K)$ for fields K of characteristic two, Beit. Algebra Geom., 58, (2017), 529-534.
[3] S. Aldhafeeri, M. Bani Ata, On Lie algebras of type F_{4} and Chevalley groups $F_{4}(K), E_{6}(K)$ and ${ }^{2} E_{6}(K)$ for fields K of charactrestic two, Communications in Algebra, 47, no. 2, (2019), 516-522.
[4] S. Aldhafeeri, M. Bani-Ata, Root-involutions and root subgroups of $E_{6}(K)$ for fields K of characteristic two, Journal of algebra and its applications, 18, no. 1, (2019), 1950017.
[5] Y. Alkhezi, M. Bani-Ata, On the stabilizer of two dimensional vector space of 27 -dimensional module of type E_{6} over a field of characteristic two, Journal of Algebra and its Applications, (2021), 2150151.
[6] M. E. Aschbacher, The 27-dimensional module for E_{6}, I, Invent. Math., 89, (1987), 159-195.
[7] M. E. Aschbacher, The 27-dimensional module for E_{6}, II, J. London Math. Soc., 37, (1988), 275-293.
[8] M. E. Aschbacher, The 27-dimensional module for E_{6}, III, Trans. Amer. Math. Soc., 321, (1990), 45-84.
[9] M. Bani-Ata, Transitivity of the Chevalley group $E_{6}(K)$ on Tits building of type E_{6}, for fields K of characteristic two, Preprint.
[10] M. Bani-Ata, Quadratic forms on the 27-dimensional modules for E_{6} in characteristic two, Journal of Lie Theory, 32, no. 1, (2022) 75-86.
[11] C. Chevalley, R. D. Schafer, The exceptional simple Lie algebras F_{4} and E_{6}, Proc. Nat. Acad. Sci., 36, (1950), 137-141.
[12] A. M. Cohen, B. N. Cooperstein, The 2-spaces of the standard $E_{6}(q)-$ module, Geom. Dedicata, 25, (1988), 467-480.
[13] B. Cooperstein, Subgroups of the group $E_{6}(q)$ which are generated by root-subgroups, J. Algebra, 46, (1977), 355-388.

