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Abstract

The purpose of this article is to give an elementary description of
the root elements and the root subgroups of the Chevalley group E of
type E6(K) in fields K of characteristic two. We show that there is
a bijection between the root subgroups of E6 and the family V6 of all
6-dimensional submodules of the 27-dimensional module E6 over K.
Then we give a construction of the stabilizer of a 6-dimensional Tits
subspace in V6 which is the maximal parabolic subgroup P6 in E6(K).

1 Introduction

Subgroups of the group E6(q) , q = pa , p ≥ 5, which are generalized by
root-subgroups were considered by Cooperstein [13]. In [3], a brief descrip-
tion of the groups E6(K) , 2E6(K) and F4(K) was given, where the root
involutions and root subgroups were defined. For more information about
Lie algebras of type E6 and their adjoint Chevalley groups, one may refer to
[1,3,4,5,7,8,11,12].

It is remarkable to mention that most of the available literature on Lie
algebras and Chevalley groups does not deal with fields of characteristic two.
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Hence this study provides a new interpretation of root system and root sub-
groups. Such interpretations are useful since they may lead to new insights
and more efficient ways of computation concerning finite simple groups of
Lie type.

2 Notations and general setup

Consider a 6-dimensional vector space V over the Galois field F2 endowed
with a non-degenerate quadratic form of minimal Witt-index. Let (v | ω) =
Q(v + ω) + Q(v) + Q(ω) be the associated bilinear form to Q on V . Let
B = {0 6= x ∈ V |Q(x) = 0} be the set of points and L = {L < V | dimL = 2
and Q(L) = 0} be the set of lines and the set of non-singular vectors s of V
are the exterior points. The order of B is 27 and the order of L is 45 . The
pair (B,L) is the generalized quadrangle of type O−

6 (2) and the Weyl group
W = {g ∈ GL(V ) | Q (xg) = Q(x)∀x ∈ V }. This group is a 3-transposition
group generated by 36 reflections σs, s is an exterior point and vσs = v+(v|s)s
for v ∈ V . For these observatations see [2].

Remark 2.1. If ∆ is a root base, then s = s∆ =
∑

x∈∆

x is an exterior point,

and ∆∗ = s∆ +∆ is also a root base. We call ∆ and ∆∗ corresponding root
bases.

Moreover, we denote by ∆0 the set of all points which are orthogonal to
s∆, so that B = ∆ ∪∆∗ ∪∆0.

Definition 2.1. Let K be a field of characteristic 2 and let A be a vector
space over K with basis {ex | x ∈ B}.

Definition 2.2. For a root base ∆ and k ∈ K, define the root-elements
(Chevalley generators) r∆(k) ∈ GL(A) by

er∆(k)
x =

{

ex + keσ∆

x , x ∈ ∆
ex , otherwise

Definition 2.3. The commutator [A, r∆(k)] is defined by,

[A, r∆(k)] = 〈ex + er∆(k)
x | x ∈ B〉.

It is clear that [A, r∆(k)] = 〈ey | y ∈ ∆∗〉 is of dimension 6, if k 6= 0.

Definition 2.4. For a root base ∆, the corresponding root-subgroup U∆

= U∆(K) = {r∆(k) | k ∈ K}. The group generated by all root-subgroups is
denoted by E(K) or simply E.
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Definition 2.5. Define a quadratic mapQ fromA into A by Q̂(a) =
∑

x∈B

Qx(a)ex,

where Qx is the quadratic form on A defined as

Qx(a) =
∑

{x,y,z}∈L

ayaz, with a =
∑

x∈B

axex

Lemma 2.1. [3] The group E = E(K) module its center is isomorphic to
the Chevalley group E6(K) or simply E6.

Remark 2.2. The 27-dimensional vector space A overK with basis {ex | x ∈
Ω} can be turned into a commutative, non-associative algebra. For x, y ∈ Ω,
set

exey =

{

ex+y , x 6= y and (x|y) = 0
0 , otherwise.

Definition 2.6. Define the inner product 〈|〉 onA by: 〈ei|ej〉 =

{

1 , i = j
0 , otherwise

and define a symmetric trilinear form T on A by

T (ex, ey, ez) =

{

1 , {x, y, z} ∈ L

0 , otherwise

In Particular, T (a, b, c) = 〈ab|c〉 = 〈a|bc〉 for all a, b, c ∈ A.

Proposition 2.1. [10]

1. Q̂(ka) = k2Q̂(a) for k ∈ K and a ∈ A.

2. Q̂(ex) = 0 for points x.

3. ab = Q̂(a+ b)− Q̂(a)− Q̂(b) for a, b ∈ A.

Remark 2.3. [10] If G = {g ∈ GL(A) | T (ag, bg, cg) = T (a, b, c) ∀a, b, c ∈ A},
then

G =
{

g ∈ GL(A) | agbg = (ab)g
∗

∀a, b, c ∈ A
}

,

where g∗ is the transposed inverse of g with respect to basis ex , x ∈ B.

Definition 2.7. Let G0 = {g ∈ GL(A) | Q̂(ag) = Q̂(a)g
∗

∀a ∈ A}.

Theorem 2.1. [10] E ≤ G0 ≤ G.
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3 Root elements and root subgroups

Now, we introduce a new definition for root subgroups of E and we show
that the two notions are equivalent.

Definition 3.1. Let a, b ∈ A where a =
∑

x∈B

axex , b =
∑

x∈B

bxex. Then the

inner product 〈a|b〉 of a and b is defined as 〈a|b〉 =
∑

x∈B

axbx.

Definition 3.2. Let a, b ∈ A with Q̂(a) = Q̂(b) = 0 and 〈a|b〉 = 0. For such
a, b, define ta,b by zta,b = z + (za)b+ 〈z|b〉a for z ∈ A.

Definition 3.3. Let V6 be the family of all singular subspaces of A of di-

mension 6; i.e., V6 =
{

U ≤ A | dim (U) = 6 and Q̂(U) = 0
}

. We define the

root-subgroups in the following way:
For U ∈ V6, define RU = {g ∈ 〈 〉 | [A, g] ≤ U ≤ CA(g)}.

Proposition 3.1. Let ∆ be a root base and U = 〈ex | x ∈ ∆〉 and let t ∈ E

such that [A, t] = U < CA(t). Then t = r∆∗(k) for some 0 6= k ∈ K and any
r∆∗(k) , k 6= 0, has this property.

Proof. For all x ∈ ∆ and for all y ∈ B , etx = ex and ety = ey + uy for
some uy ∈ U as [A, t] = U . Hence if y ∈ ∆∗, then ety = ey + uy and

eyuy = Q̂(ey + uy) = Q̂(ety) = Q̂(ey)
t∗ = 0t

∗

= 0, using Proposition 2.1 and
Theorem 2.1.
Let uy =

∑

z∈∆

kzez, then 0 = eyuy =
∑

z

kzeyez =
∑

z 6=yσ

kzey+z, and hence,

uy = kyeyσ , where σ is the reflection corresponding to s∆. Also, if y1, y2 ∈
∆∗ , y1 6= y2, then (ey1 + ky1eyσ1 )(ey2 + ky2eyσ2 ) = ety1e

t
y2

= (ey1ey2)
t∗ = 0,

which implies 0 = ky1eyσ1 ey2 + ky2ey1eyσ2 = (ky1 + ky2)ey1+y2+s∆ , from which it
follows that ky1 = ky2. Hence, etx = ex for all x ∈ ∆, and ety = ey + keyσ for
y ∈ ∆∗. It remains to discuss the case z ∈ ∆0 which implies z = x + y + s
for x, y ∈ ∆ , x 6= y. For y1 ∈ ∆ \ {x, y}, it follows that 〈y1 + s|x+ y + s〉 =
〈y1|x + y + s〉 = 1 which implies ey1+s · ez = 0. As etz = ez + uz and
ety1+s = ey1+s + key1 as y1 + s ∈ ∆∗, we have

(ez + uz)(ey1+s + key1) = etze
t
y1+s = (ezey1+s)

t∗ = 0
= kezey1 + uzey1+s = uzey1+s as 〈y1|z〉 = 〈y1 + s|z〉 = 1.

If uz =
∑

x∈∆

kxex, then 0 = ey1+suz =
∑

x∈∆

kxey1+sex =
∑

x 6=y1

kxey1+x+s which

implies kx = 0 for all x 6= y1. For y1 6= x, y , uz = ky1ey1 . Take another y′1.
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Then uz = ky′
1
ey′

1
which implies uz = 0. Hence t = r∆∗(k) for some k ∈ K.

The converse holds by Definition 2.6.

Corollary 3.1. The two definitions of root-subgroups are equivalent.

Proof. There is a bijection between the root subgroups and V6; i.e., a map
sends the root-subgroup U∆ to [A,U∆] ∈ V6. The above proposition shows
that

{g ∈ 〈 〉 | [A, g] ≤ U ≤ CA(g)} = {r∗∆(k) | k 6= 0} .

As E is transitive on V6, the claim follows using [9, Theorem 2.1].

Lemma 3.1. Let g ∈ E ≤ G0. Then tga,b = tag ,bg∗ .

Proof. Consider

zg
−1(ta,b)g =

(

zg
−1

+ (zg
−1

a)b+ 〈zg
−1

|b〉a
)g

= z + ((zg
−1

a)b)g + 〈z|bg
∗

〉ag

= z + (zag)bg
∗

+ 〈z|bg
∗

〉ag as ((zg
−1

a)b)g = (zg
−1

a)g
∗

bg
∗

= (zag)bg
∗

Hence the claim follows.

Lemma 3.2. Let ep, b ∈ A for p ∈ B with Q̂(ep) = Q̂(b) = 0 , 〈ep|b〉 =
0, and b = b0 + b1 where b0 ∈ A0(p) and b1 ∈ A1(p). Then

[

A, tep,b
]

=
[

A, tep,b1
]

= 〈ep〉+ (epA)b1 ∈ V6, where A0(p) = 〈ex | (p|x) = 0〉 and A1(p) =
〈ex | (p|x) = 1〉.

Proof. As 〈ep|b〉 = 0 and as Q̂(b) = 0, it follows that 0 = Q̂(b0 + b1) =

Q̂(b0) + Q̂(b1) + b0b1, which implies Q̂(b0) = 0 , Q̂(b1) = 0 , b0b1 = 0 as
Q̂(b0) ∈ 〈ep〉 , Q̂(b1) ∈ A0(p) , b0b1 ∈ A1(p).

Let x ∈ B. Then e
tep,b
x = ex + (exep)b + 〈ex|b〉ep = ex + (exep)b + bxep where

bx = 〈ex|b〉. Set t = tep,b. Hence etp = ep. If (x|p) = 1, then etx = ex + 0 ·
b + bxep = ex + bxep. If (x|p) = 0, then etx = ex + ex+p(b0 + b1) + bxep =
ex + ex+pb1 + ex+pb0 + bxep = ex + ex+pb1 as ex+pb0 + bxep = 0. Because

b0 =
∑

(y|p)=0

kyey, we have ex+pb0 =
∑

(y|p)=0

kyex+pey

= kxex+pex = kxep = bxep. Hence, tep,b = tep,b1 and tep,b = I if and only
if b1 = 0. If b1 6= 0, then

[

A, tep,b1
]

= 〈ep〉 + (epA)b1 = 〈ep〉 + (epA)b, and
〈ep〉 + (epA)b1 ∈ V6 as it is conjugate under Levi(p) to 〈ep〉 + (epA)ew for
w ∈ B with (p, w) = 1, where Levi(p) = {r∆(k) | k 6= 0, (p, s) = 0}. Hence
the claim obtains.

Lemma 3.3. The subspace [A, ta,b] = 〈a〉+ (aA)b ∈ V6, where a, b ∈ A ,

Q̂(a) = Q̂(b) = 〈a|b〉 = 0.
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Proof. As E is transitive on V6 [9], then there exists g ∈ E ≤ G0 with ag = ep
for p ∈ B and hence tga,b = tag ,bg∗ = tep,c where c = bg

∗

. Hence ta,b = I or

ta,b 6= I and [A, ta,b]
g =

[

A, tag ,bg∗
]

= [A, tag,c] by Lemma 3.1 and Lemma 3.2.
This implies
[A, tag ,c] = 〈ep〉 + (epA)c = 〈ag〉 + (agA)bg

∗

= 〈ag〉 + ((aA)b)g or [A, ta,b] =
〈a〉+ (aA)b ∈ V6. Hence the claim follows.

Theorem 3.1. The set
{

ta,b 6= I | Q̂(a) = Q̂(b) = 0 , 〈a|b〉 = 0
}

forms a con-

jugacy class r∆(1)
E in E containing all root elements r∆(k) , k 6= 0, and each

root element in E can be written as ta,b for suitable elements a, b ∈ A.

Proof. In Lemma 3.2 it has been shown that any such element ta,b 6= I is
conjugate to an element tep,ew for p, w ∈ B with (p, w) = 1, and tep,ew = σp+w

is conjugate to r∆(1) for a root base ∆ with s∆ = p+ w. In a matrix form,

σs∆ =





I I 0
0 I 0
0 0 I



 and σp+w =





0 I 0
I 0 0
0 0 I



.

In other words, {ta,b 6= I | Q̂(b) = Q̂(a) = 〈a|b〉 = 0} is a conjugacy class
r∆(1)

E, in E containing the root-element r∆(k) , k 6= 0. Hence the claim
rsults.

Remark 3.1. K admits an automorphism of order 2, written as x −→ x̄.

For a =
∑

x∈B

axex ∈ A, set ā =
∑

x∈B

āxex, and define the unitary from

(a|b) = 〈a|b̄〉 on A.
Define U = {g ∈ G0 | g preserves the unitary form; i.e., g∗ = ḡ where g∗ = (gt)−1}.
Then U/Z(U) is the simple group 2E6(K̄). If K = Fq2, then x̄ = xq , q is a
power of a prime.

For a ∈ A with Q̂(a) = 0 and (a|a) = 0 = 〈a|ā〉, set ta = ta,ā. Then ta
is a root element or I. If g ∈ U , then tga = tag as tga = (ta,ā)

g = tag ,āg∗ =

tag ,āḡ = tag , this implies that ta ∈ U and the set
{

ta 6= I | Q̂(a) = 0 = (a|a)
}

are the long root elements in 2E6(K̄).

Definition 3.4. Let X be a coclique in B and A(x) = 〈ex|x ∈ X〉. Let
NE(A(X))
be the stabilizer of A(X) in E and H(A(X)) = 〈r∆(k) | r∆(k) ∈ NE(A(X))〉
= 〈U∆ | U∆ ≤ NE(A(X))〉, where ∆ is a root base.

Proposition 3.2. [1] The group H(A(X)) is the semidirect product R⋊ L,
where
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L = 〈r∆(k) | s∆ = x+ y for x, y ∈ X〉 called the Levi-complement and
R = 〈r∆(k) | ∆ ∩X = ∅〉 called the unipotent radical.

Theorem 3.2. Let ∆ be a root base and U = A(∆) = 〈ex|x ∈ ∆〉.
If H = H(A(∆)) = R⋊ L ≤ NE(A(∆)), then

1. (A(∆∗))H = A(∆∗)R, where ∆∗ = ∆σs , s = s∆.

2. R acts regularly on A(∆∗); that is, NR(A(∆
∗)) = I.

3. If |K| = q, then H ∼= q1+20 ⋊ SL6(q) the maximal parabolic subgroup
P6 in E6(K).

Proof. R acts trivially on A(∆) and leaves the sequence 0 < A(∆) < A(∆ ∪
∆0) < A invariant. Hence A(∆∗)H = A(∆∗)R as L stabilizes A(∆∗). So it
remains to show that NR(A(∆

∗)) = I. Let g ∈ NR(A(∆
∗)). This implies that

egx = ex , ∀x ∈ ∆ and also
egx = ex , ∀x ∈ ∆∗, because if x ∈ ∆∗, then egx− ex ∈ A(∆∪∆0)∩A(∆∗) = 0
or egx = ex as [A,R] ≤ A(∆ ∪∆0). If z ∈ ∆0, then z = x + y = s∆ , x, y ∈
∆ , x 6= y. If y1 ∈ ∆\ {x, y}, then (y1|z) = (y1+ s|s) = 0 and egz = ez +u for
some u ∈ A(∆). Hence ey1+s∆(ez + u) = egy1+s∆

egz = (ey1+s∆ez)
g∗ = 0. This

implies 0 = ey1+s∆(ez + u) = ey1+s∆u. Hence ey1+s∆u = 0 , ∀y1 ∈ ∆ \ {x, y},
which implies u = 0. Hence g = I. This proves (1) and (2).

Let R0 = {∆∗} and R1 be the set of all root bases Γ such that |Γ∩∆∗| = 3.
By [2, Corollary 6.2], |∆∗ ∩ Γ| = 3 if |∆ ∩ Γ| = ∅. This implies that |R1| =
(

6
3

)

= 20 and R = {rΓ(k) | Γ ∈ R0 ∪ R1 , k ∈ K}. Hence, the unipotent
radical R ∼= K1+20. The Levi-complement L leaves A(∆) , A(∆∗) and
A(∆0) invariant and acts faithfully on A(∆), induces SL(A(∆)) ∼= SL6(K)
on A(∆). As R acts regularly on A(∆∗) and if |K| = q a power of prime, then
|(A(∆∗))H | = |(A(∆∗))R| = |R| = q1+20. Hence H(A(∆)) = q1+20 ⋊ SL6(q),
which is the maximal parabolic subgroup P6 in E6(q). This proves (3).

Remark 3.2. The space A(∆) of dimension 6 is called a Tits subspace in
V6 and the group H(A(∆)) computed above is a Borel subgroup of E6(K),
that is the stabilizer of A(∆) in E6(K).

4 Acknowledgment

The authors thank the Public Authority for Applied Education and Training
for supporting the research project no BE-21-07.



226 A. Alhuraiji, M. A. Bani-Ata

References

[1] A. Alazemi, M. Bani Ata, On construction of the maximal parabolic
subgroup P1 of E6(K) for fields K of characteristic two, J. Lie Theory,
27, (2016), 1107–1118.

[2] S. Aldhafeeri, M. Bani Ata, On the construction of Lie-algebras of
type E6(K) for fields K of characteristic two, Beit. Algebra Geom., 58,
(2017), 529–534.

[3] S. Aldhafeeri, M. Bani Ata, On Lie algebras of type F4 and Chevalley
groups F4(K) , E6(K) and 2E6(K) for fields K of charactrestic two,
Communications in Algebra, 47, no. 2, (2019), 516–522.

[4] S. Aldhafeeri, M. Bani-Ata, Root-involutions and root subgroups of
E6(K) for fields K of characteristic two, Journal of algebra and its ap-
plications, 18, no. 1, (2019), 1950017.

[5] Y. Alkhezi, M. Bani-Ata, On the stabilizer of two dimensional vector
space of 27-dimensional module of type E6 over a field of characteristic
two, Journal of Algebra and its Applications, (2021), 2150151.

[6] M. E. Aschbacher, The 27-dimensional module for E6, I, Invent. Math.,
89, (1987), 159–195.

[7] M. E. Aschbacher, The 27-dimensional module for E6, II, J. London
Math. Soc., 37, (1988), 275–293.

[8] M. E. Aschbacher, The 27-dimensional module for E6, III, Trans. Amer.
Math. Soc., 321, (1990), 45–84.

[9] M. Bani-Ata, Transitivity of the Chevalley group E6(K) on Tits building
of type E6, for fields K of characteristic two, Preprint.

[10] M. Bani-Ata, Quadratic forms on the 27-dimensional modules for E6 in
characteristic two, Journal of Lie Theory, 32, no. 1, (2022) 75–86.

[11] C. Chevalley, R. D. Schafer, The exceptional simple Lie algebras F4 and
E6, Proc. Nat. Acad. Sci., 36, (1950), 137–141.



Root elements and root subgroups... 227

[12] A. M. Cohen, B. N. Cooperstein, The 2-spaces of the standard E6(q)-
module, Geom. Dedicata, 25, (1988), 467–480.

[13] B. Cooperstein, Subgroups of the group E6(q) which are generated by
root-subgroups, J. Algebra, 46, (1977), 355–388.


