International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 137–142

Characterizations of $\delta s(\Lambda, s)$ -symmetric spaces and sober $\delta s(\Lambda, s)$ - R_0 spaces

Napassanan Srisarakham, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: napassanan.sri@msu.ac.th, chawalit.b@msu.ac.th

(Received June 6, 2023, Accepted July 24, 2023, Published August 31, 2023)

Abstract

This paper is concerned with the concepts of $\delta s(\Lambda, s)$ -symmetric spaces and sober $\delta s(\Lambda, s)$ - R_0 spaces. Moreover, some characterizations of $\delta s(\Lambda, s)$ -symmetric spaces and sober $\delta s(\Lambda, s)$ - R_0 spaces are established.

1 Introduction

Semi-open sets, preopen sets and δ -open sets play an important role in the theory of classical point set topology. In 1963, Levine [6] offered a new concept in the field of topology by introducing the notion of semi-open sets in topological spaces. In 1968, Veličko [10] introduced δ -open sets, which are stronger than open sets. In 1997, Park et al. [7] introduced δ -semiopen sets which are stronger than semi-open sets but weaker than δ -open sets. In 2003, Caldas et al. [3] introduced some weak separation axioms by utilizing δ -semiopen sets and the δ -semiclosure operator. Moreover, Caldas et al. [3] investigated some characterizations of sober δ -semi R_0 spaces. Caldas and

Key words and phrases: $\delta s(\Lambda, s)$ -open set, $\delta s(\Lambda, s)$ -symmetric space, sober $\delta s(\Lambda, s)$ - R_0 space. The Corresponding author is Napassanan Srisarakham.

AMS (MOS) Subject Classifications: 54A05, 54D10. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net Jafari [4] introduced and studied the notion of Λ_{δ} -symmetric spaces. In 2005, Caldas et al. [2] investigated the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In [1], the present authors introduced and investigated the concept of (Λ, s) -closed sets by utilizing the notions of Λ_s -sets and semi-closed sets. Quit recently, Pue-on and Boonpok [8] introduced and studied the notions of $\delta s(\Lambda, s)$ -open sets and $\delta s(\Lambda, s)$ -closed sets. In this paper, we introduce the concepts of $\delta s(\Lambda, s)$ -symmetric spaces and sober $\delta s(\Lambda, s)$ - R_0 spaces. Moreover, some characterizations of $\delta s(\Lambda, s)$ -symmetric spaces and sober $\delta s(\Lambda, s)$ - R_0 spaces are investigated.

2 Preliminaries

Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called *semi-open* [6] if $A \subseteq Cl(Int(A))$. A subset A of a topological space (X, τ) is called (Λ, s) -closed [1] if $A = T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) -closed set is called (Λ, s) -open. Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, s) -cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, s) -open set U of X containing x. The set of all (Λ, s) -cluster points of A is called the (Λ, s) -closure [1] of A and is denoted by $A^{(\Lambda, s)}$. The union of all (Λ, s) -open sets contained in A is called the (Λ, s) -interior [1] of A and is denoted by $A_{(\Lambda,s)}$. A point x of X is called a $\delta(\Lambda,s)$ -cluster point [9] of A if $A \cap [V^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$ for every (Λ, s) -open set V of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [9] of A and is denoted by $A^{\delta(\Lambda,s)}$. If $A = A^{\delta(\Lambda,s)}$, then A is said to be $\delta(\Lambda,s)$ -closed [9]. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open [9]. The union of all $\delta(\Lambda, s)$ -open sets contained in A is called the $\delta(\Lambda, s)$ -interior [9] of A and is denoted by $A_{\delta(\Lambda,s)}$. A subset A of a topological space (X,τ) is said to be $\delta s(\Lambda, s)$ -open [8] if $A \subseteq [A_{(\Lambda, s)}]^{\delta(\Lambda, s)}$. The complement of a $\delta s(\Lambda, s)$ -open set is said to be $\delta s(\Lambda, s)$ -closed. The family of all $\delta s(\Lambda, s)$ open (resp. $\delta s(\Lambda, s)$ -closed) sets in a topological space (X, τ) is denoted by $\delta s(\Lambda, s) O(X, \tau)$ (resp. $\delta s(\Lambda, s) C(X, \tau)$). A subset N of a topological space (X,τ) is called a $\delta s(\Lambda,s)$ -neighborhood [8] of a point $x \in X$ if there exists a $\delta s(\Lambda, s)$ -open set V such that $x \in V \subseteq N$. Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta s(\Lambda, s)$ -cluster point [8] of A if $A \cap U \neq \emptyset$ for every $\delta s(\Lambda, s)$ -open set U of X containing x. The

Characterizations of $\delta s(\Lambda, s)$ -symmetric...

set of all $\delta s(\Lambda, s)$ -cluster points of A is called the $\delta s(\Lambda, s)$ -closure [8] of Aand is denoted by $A^{\delta s(\Lambda, s)}$. A subset $\delta s(\Lambda, s)Ker(A)$ is defined as follows: $\delta s(\Lambda, s)Ker(A) = \cap \{U \mid A \subseteq U, U \in \delta s(\Lambda, s)O(X, \tau)\}$ [8].

3 On characterizations of $\delta s(\Lambda, s)$ -symmetric spaces

In this section, we introduce the notion of $\delta s(\Lambda, s)$ -symmetric spaces. Moreover, we discuss several characterizations of $\delta s(\Lambda, s)$ -symmetric spaces.

Definition 3.1. A topological space (X, τ) is said to be $\delta s(\Lambda, s)$ -symmetric if for each x and y in X, $x \in \{y\}^{\delta s(\Lambda, s)}$ implies $y \in \{y\}^{\delta s(\Lambda, s)}$.

Definition 3.2. A subset A of a topological space (X, τ) is said to be generalized $\delta s(\Lambda, s)$ -closed (briefly, g- $\delta s(\Lambda, s)$ -closed) if $A^{\delta s(\Lambda, s)} \subseteq U$ whenever $A \subseteq U$ and U is $\delta s(\Lambda, s)$ -open in (X, τ) .

Theorem 3.3. A subset A of a topological space (X, τ) is g- $\delta s(\Lambda, s)$ -closed if and only if $F \cap A^{\delta s(\Lambda, s)} = \emptyset$ whenever $A \cap F = \emptyset$ and F is $\delta s(\Lambda, s)$ -closed.

Proof. The proof follows from Theorem 16 of [1].

Theorem 3.4. A subset A of a topological space (X, τ) is g- $\delta s(\Lambda, s)$ -closed if and only if $A \cap \{x\}^{\delta s(\Lambda, s)} \neq \emptyset$ for every $x \in A^{\delta s(\Lambda, s)}$.

Proof. The proof follows from Theorem 17 of [1].

Theorem 3.5. A topological space (X, τ) is $\delta s(\Lambda, s)$ -symmetric if and only if $\{x\}$ is g- $\delta s(\Lambda, s)$ -closed for each $x \in X$.

Proof. Assume that $x \in \{y\}^{\delta s(\Lambda,s)}$ but $y \in \{x\}^{\delta s\Lambda,s)}$. This means that the complement of $\{x\}^{\delta s(\Lambda,s)}$ contains y. Thus, the set $\{y\}$ is a subset of the complement of $\{x\}^{\delta s(\Lambda,s)}$. This implies that $\{y\}^{\delta s(\Lambda,s)}$ is a subset of the complement of $\{x\}^{\delta s(\Lambda,s)}$. Now the complement of $\{x\}^{\delta s(\Lambda,s)}$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subseteq U \in \delta s(\Lambda, s)O(X, \tau)$, but $\{x\}^{\delta s(\Lambda, s)}$ is not a subset of U. This means that $\{x\}^{\delta s(\Lambda, s)}$ and the complement of U are not disjoint. Let y belongs to their intersection. Now we have $x \in \{y\}^{\delta s(\Lambda, s)}$ which is a subset of the complement of U and $x \notin U$. This is a contradiction. \Box

Definition 3.6. A topological space (X, τ) is called $\delta s(\Lambda, s)$ - T_1 if for any distinct pair of points x and y in X, there exist a $\delta s(\Lambda, s)$ -open set U of X containing x but not y and a $\delta s(\Lambda, s)$ -open set V of X containing y but not x.

Theorem 3.7. A topological space (X, τ) is $\delta s(\Lambda, s)$ - T_1 if and only if the singleton are $\delta s(\Lambda, s)$ -closed sets.

Proof. The proof follows from Theorem 3.2 of [5].

Theorem 3.8. If a topological space (X, τ) is $\delta s(\Lambda, s)$ - T_1 , then (X, τ) is $\delta s(\Lambda, s)$ -symmetric.

Proof. Let $x \in X$. Since (X, τ) is $\delta s(\Lambda, s)$ - T_1 , $\{x\}$ is $\delta s(\Lambda, s)$ -closed. Then, $\{x\}$ is g- $\delta s(\Lambda, s)$ -closed and by Theorem 3.5, (X, τ) is $\delta s(\Lambda, s)$ -symmetric. \Box

Definition 3.9. A topological space (X, τ) is called $\delta s(\Lambda, s)$ - T_0 if for any distinct pair of points in X, there exists a $\delta s(\Lambda, s)$ -open set containing one of the points but not the other.

Remark 3.10. If a topological space (X, τ) is $\delta s(\Lambda, s)$ - T_1 , then (X, τ) is $\delta s(\Lambda, s)$ - T_0 .

Theorem 3.11. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta s(\Lambda, s)$ -symmetric and $\delta s(\Lambda, s)$ - T_0 ;
- (2) (X, τ) is $\delta s(\Lambda, s)$ - T_1 .

Proof. By Theorem 3.8 and Remark 3.10 it suffices to prove only $(1) \Rightarrow (2)$. Let $x, y \in X, x \neq y$ and by $\delta s(\Lambda, s)$ - T_0 , we may assume that $x \in U \subseteq X - \{y\}$ for some $U \in \delta s(\Lambda, s)O(X, \tau)$. Then, $x \notin \{y\}^{\delta s(\Lambda, s)}$. Thus, $y \notin \{x\}^{\delta s(\Lambda, s)}$. There exists $V \in \delta s(\Lambda, s)O(X, \tau)$ such that $y \in V \subseteq X - \{x\}$. This shows that (X, τ) is $\delta s(\Lambda, s)$ - T_1 .

Theorem 3.12. For a $\delta s(\Lambda, s)$ -symmetric space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta s(\Lambda, s)$ -T₀;
- (2) (X, τ) is $\delta s(\Lambda, s)$ -T₁.

Proof. (1) \Rightarrow (2): Follows from Theorem 3.11. (2) \Rightarrow (1): Follows from Remark 3.10.

140

4 Characterizations of sober $\delta s(\Lambda, s)$ - R_0 spaces

In this section, we introduce the notion of sober $\delta s(\Lambda, s)$ - R_0 spaces. Moreover, some characterizations of sober $\delta s(\Lambda, s)$ - R_0 spaces are discussed.

Definition 4.1. A topological space (X, τ) is said to be sober $\delta s(\Lambda, s)$ - R_0 if $\bigcap_{x \in X} \{x\}^{\delta s(\Lambda, s)} = \emptyset$.

Theorem 4.2. A topological space (X, τ) is sober $\delta s(\Lambda, s)$ - R_0 if and only if $\delta s(\Lambda, s)Ker(\{x\}) \neq X$ for each $x \in X$.

Proof. Suppose that the space (X, τ) is sober $\delta s(\Lambda, s) - R_0$. Assume that there exists a point y in X such that $\delta s(\Lambda, s) Ker(\{y\}) = X$. Let x be any point of X. Then, we have $x \in V$ for every $\delta s(\Lambda, s)$ -open set V containing y and hence $y \in \{x\}^{\delta s(\Lambda, s)}$ for each $x \in X$. Thus, $y \in \bigcap_{x \in X} \{x\}^{\delta s(\Lambda, s)}$. This is a contradiction.

Conversely, assume that $\delta s(\Lambda, s) Ker(\{x\}) \neq X$ for each $x \in X$. If there exists a point y in X such that $y \in \bigcap_{x \in X} \{x\}^{\delta s(\Lambda, s)}$, then every $\delta s(\Lambda, s)$ -open set containing y must contain every point of X. This implies that the space (X, τ) is the unique $\delta s(\Lambda, s)$ -open set containing y. Thus, $\delta s(\Lambda, s) Ker(\{x\}) = X$ which is a contradiction. This shows that (X, τ) is sober $\delta s(\Lambda, s) - R_0$. \Box

Definition 4.3. A function $f : (X, \tau) \to (Y, \sigma)$ is called $\delta s(\Lambda, s)$ -closed if f(F) is $\delta s(\Lambda, s)$ -closed in Y for every $\delta s(\Lambda, s)$ -closed set F of X.

Theorem 4.4. If $f : (X, \tau) \to (Y, \sigma)$ is an injective $\delta s(\Lambda, s)$ -closed function and (X, τ) is sober $\delta s(\Lambda, s)$ - R_0 , then (Y, σ) is sober $\delta s(\Lambda, s)$ - R_0 .

Proof. Since (X, τ) is sober $\delta s(\Lambda, s) - R_0$, $\bigcap_{x \in X} \{x\}^{\delta s(\Lambda, s)} = \emptyset$. Since f is a $\delta s(\Lambda, s)$ -closed injection, we have

$$\emptyset = f(\bigcap_{x \in X} \{x\}^{\delta s(\Lambda, s)}) = \bigcap_{x \in X} f(\{x\}^{\delta s(\Lambda, s)}) \supseteq \bigcap_{x \in X} \{f(x)\}^{\delta s(\Lambda, s)} \supseteq \bigcap_{y \in Y} \{y\}^{\delta s(\Lambda, s)}.$$

Thus, (Y, σ) is sober $\delta s(\Lambda, s)$ - R_0 .

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri, δ-semiopen sets in topological spaces, Topology Proc., 29, no. 2, (2005), 369–383.
- [3] M. Caldas, D. N. Georgiou, S. Jafari, T. Noiri, More on δ-semiopen sets, Note di Matematica, 22, no. 2, (2003), 1–14.
- [4] M. Caldas, S. Jafari, On some low separation axioms in topological spaces, Houston J. Math., 29, no. 1, (2003), 93–104.
- [5] J. Khampakdee, C. Boonpok, On $\delta p(\Lambda, s)$ -symmetric spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 755–759.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, (1963), 36–41.
- [7] J. H. Park, B. Y. Lee, M. J. Son, On δ-semiopen sets in topological spaces, J. Indian Acad. Math., 19, (1997), 59–67.
- [8] P. Pue-on, C. Boonpok, On $\delta s(\Lambda, s)$ -open sets in topological spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 749–753.
- [9] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [10] N. V. Veličko, *H*-closed topological spaces, Amer. Math. Soc. Transl., 78, no. 2, (1968), 102–118.