

# On $S\Lambda_s$ -connected spaces

#### Prapart Pue-on, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Faculty of Science
Mahasarakham University
Maha Sarakham, 44150, Thailand

email: prapart.p@msu.ac.th, chawalit.b@msu.ac.th

(Received May 22, 2023, Accepted July 22, 2023, Published August 31, 2023)

#### Abstract

In this paper, our main goal is to introduce the concept of  $S\Lambda_s$ -connected spaces. Moreover, we investigate some properties of  $S\Lambda_s$ -connected spaces.

## 1 Introduction

The concept of semi-open sets was first introduced by Levine [4]. Veličko [10] introduced  $\delta$ -open sets, which are stronger than open sets. Park et al. [5] offered a new notion called  $\delta$ -semiopen sets which are stronger than semi-open sets but weaker than  $\delta$ -open sets and investigated the relationships among several types of these open sets. Caldas et al. [3] investigated some weak separation axioms by utilizing  $\delta$ -semiopen sets and the  $\delta$ -semiclosure operator. Moreover, Caldas et al. [2] investigated the notion of  $\delta$ - $\Lambda_s$ -semiclosed sets which is defined as the intersection of a  $\delta$ - $\Lambda_s$ -set and a  $\delta$ -semiclosed set. In [1], the present authors introduced and investigated the concept of  $(\Lambda, s)$ -closed sets by utilizing the notions of  $\Lambda_s$ -sets and semi-closed sets. Srisarakham and Boonpok [9] introduced and studied the notions of  $\delta(\Lambda, s)$ -closed sets

Key words and phrases:  $s(\Lambda, s)$ -open set,  $S\Lambda_s$ -connected space.

The corresponding author is Prapart Pue-on.

AMS (MOS) Subject Classifications: 54A05, 54D10. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

and  $\delta(\Lambda, s)$ -open sets. Pue-on and Boonpok [7] introduced and investigated the concepts of  $\delta s(\Lambda, s)$ -open sets and  $\delta s(\Lambda, s)$ -closed sets. In this paper, we introduce the concept of  $S\Lambda_s$ -connected spaces. In particular, several properties of  $S\Lambda_s$ -connected spaces are discussed.

#### 2 Preliminaries

Let A be a subset of a topological space  $(X, \tau)$ . A subset A is called  $s(\Lambda, s)$ open (resp.  $p(\Lambda, s)$ -open,  $\alpha(\Lambda, s)$ -open,  $\beta(\Lambda, s)$ -open)[1] if  $A \subseteq [A_{(\Lambda, s)}]^{(\Lambda, s)}$  (resp.  $A \subseteq [A^{(\Lambda, s)}]_{(\Lambda, s)}$ ,  $A \subseteq [[A_{(\Lambda, s)}]^{(\Lambda, s)}]_{(\Lambda, s)}$ ,  $A \subseteq [[A^{(\Lambda, s)}]_{(\Lambda, s)}]_{(\Lambda, s)}$ ). The family of all  $s(\Lambda, s)$ -open (resp.  $p(\Lambda, s)$ -open,  $\alpha(\Lambda, s)$ -open,  $\beta(\Lambda, s)$ -open) sets in a topological space  $(X,\tau)$  is denoted by  $s(\Lambda,s)O(X,\tau)$  (resp.  $p(\Lambda,s)O(X,\tau)$ ,  $\alpha(\Lambda, s)O(X, \tau), \beta(\Lambda, s)O(X, \tau)$ . The complement of a  $s(\Lambda, s)$ -open (resp.  $p(\Lambda, s)$ -open,  $\alpha(\Lambda, s)$ -open,  $\beta(\Lambda, s)$ -open) set is called  $s(\Lambda, s)$ -closed (resp.  $p(\Lambda, s)$ -closed,  $\alpha(\Lambda, s)$ -closed,  $\beta(\Lambda, s)$ -closed). The intersection of all  $s(\Lambda, s)$ closed sets containing A is called the  $s(\Lambda, s)$ -closure of A and is denoted by  $A^{s(\Lambda,s)}$ . A subset A is called  $s(\Lambda,s)$ -regular if A is  $s(\Lambda,s)$ -open and  $s(\Lambda,s)$ closed. The family of all  $s(\Lambda, s)$ -regular sets in a topological space  $(X, \tau)$  is denoted by  $s(\Lambda, s)r(X, \tau)$ . A point x of X is called a  $\delta(\Lambda, s)$ -cluster point [9] of A if  $A \cap [U^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$  for every  $(\Lambda,s)$ -open set U of X containing x. The set of all  $\delta(\Lambda, s)$ -cluster points of A is called the  $\delta(\Lambda, s)$ -closure [9] of A and is denoted by  $A^{\delta(\Lambda,s)}$ . A subset A is called  $\delta(\Lambda,s)$ -closed [9] if  $A=A^{\delta(\Lambda,s)}$ . The complement of a  $\delta(\Lambda, s)$ -closed set is said to be  $\delta(\Lambda, s)$ -open. A subset A is called  $\delta s(\Lambda, s)$ -open [7] if  $A \subseteq [A_{(\Lambda, s)}]^{\delta(\Lambda, s)}$ . The complement of a  $\delta s(\Lambda, s)$ open set is called  $\delta s(\Lambda, s)$ -closed. The family of all  $\delta s(\Lambda, s)$ -open sets in a topological space  $(X,\tau)$  is denoted by  $\delta s(\Lambda,s)O(X,\tau)$ . A point x of X is called a  $\delta s(\Lambda, s)$ -cluster point [7] of A if  $A \cap U \neq \emptyset$  for every  $\delta s(\Lambda, s)$ -open set U of X containing x. The set of all  $\delta s(\Lambda, s)$ -cluster points of A is called the  $\delta s(\Lambda, s)$ -closure [7] of A and is denoted by  $A^{\delta s(\Lambda, s)}$ .

# 3 Properties of $S\Lambda_s$ -connected spaces

In this section, we introduce the concept of  $S\Lambda_s$ -connected spaces. Moreover, we investigate some properties of  $S\Lambda_s$ -connected spaces.

**Definition 3.1.** A topological space  $(X, \tau)$  is called  $S\Lambda_s$ -connected if X cannot be expressed as a disjoint union of two nonempty  $s(\Lambda, s)$ -open sets.

**Lemma 3.2.** [8] For a subset A of a topological space  $(X, \tau)$ , the following properties hold:

- (1) If A is a  $s(\Lambda, s)$ -regular set, then it is  $\delta s(\Lambda, s)$ -open.
- (2) If A is a  $\delta s(\Lambda, s)$ -open set, then it is  $s(\Lambda, s)$ -open.
- (3) If A is a  $s(\Lambda, s)$ -open set, then  $A^{s(\Lambda, s)}$  is  $s(\Lambda, s)$ -regular.

**Lemma 3.3.** [8] Let  $(X, \tau)$  be a topological space. Then,  $V^{\theta s(\Lambda, s)} = V^{\delta s(\Lambda, s)} = V^{s(\Lambda, s)}$  for each  $V \in s(\Lambda, s)O(X, \tau)$ .

**Theorem 3.4.** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- (1)  $V^{(\Lambda,s)} = X$  for every nonempty  $(\Lambda, s)$ -open set V of X;
- (2)  $(X, \tau)$  is  $S\Lambda_s$ -connected;
- (3) X cannot be expressed by the disjoint union of two nonempty  $\delta s(\Lambda, s)$ open sets;
- (4)  $V^{\delta s(\Lambda,s)} = X$  for every nonempty  $\delta s(\Lambda,s)$ -open set V of X.
- *Proof.* (1)  $\Leftrightarrow$  (2): The proof follows from Theorem 4.3 of [6].
- (2)  $\Rightarrow$  (3): Suppose that there exist two nonempty  $\delta s(\Lambda, s)$ -open sets  $V_1, V_2$  such that  $V_1 \cap V_2 = \emptyset$  and  $V_1 \cup V_2 = X$ . Since  $\delta s(\Lambda, s)O(X, \tau) \subseteq s(\Lambda, s)O(X, \tau)$ , this shows that  $(X, \tau)$  is not  $S\Lambda_s$ -connected.
- $(3)\Rightarrow (4)$ : Suppose that  $V^{\delta s(\Lambda,s)}\neq X$  for some nonempty  $\delta s(\Lambda,s)$ -open set V of X. Then  $X-V^{\delta s(\Lambda,s)}\neq\emptyset$  and  $X=(X-V^{\delta s(\Lambda,s)})\cup V^{\delta s(\Lambda,s)}$ . Since  $\delta s(\Lambda,s)O(X,\tau)\subseteq s(\Lambda,s)O(X,\tau)$  by Lemma 3.2 and Lemma 3.3  $V^{\delta s(\Lambda,s)}=V^{s(\Lambda,s)}\in s(\Lambda,s)r(X,\tau)$ . Moreover, since  $s(\Lambda,s)r(X,\tau)\subseteq \delta s(\Lambda,s)O(X,\tau)$ ,  $(X-V^{\delta s(\Lambda,s)})$  and  $V^{\delta s(\Lambda,s)}$  are  $\delta s(\Lambda,s)$ -open.
- $(4) \Rightarrow (1)$ : Let V be any nonempty  $(\Lambda, s)$ -open set of X. Then,  $V^{(\Lambda, s)}$  is  $r(\Lambda, s)$ -closed and hence  $s(\Lambda, s)$ -regular. Thus,  $V^{(\Lambda, s)}$  is  $\delta s(\Lambda, s)$ -open and  $X = [V^{(\Lambda, s)}]^{\delta s(\Lambda, s)} = [V^{(\Lambda, s)}]^{s(\Lambda, s)} = V^{(\Lambda, s)}$ .

**Theorem 3.5.** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- (1)  $(X, \tau)$  is  $S\Lambda_s$ -connected;
- (2)  $V^{\delta s(\Lambda,s)} = X$  for every nonempty  $V \in \beta(\Lambda,s)O(X,\tau)$ ;

- (3)  $V^{\delta s(\Lambda,s)} = X$  for every nonempty  $V \in s(\Lambda,s)O(X,\tau)$ ;
- (4)  $V^{\delta s(\Lambda,s)} = X$  for every nonempty  $V \in p(\Lambda,s)O(X,\tau)$ ;
- (5)  $V^{\delta s(\Lambda,s)} = X$  for every nonempty  $V \in \alpha(\Lambda,s)O(X,\tau)$ ;
- (6)  $V^{\delta s(\Lambda,s)} = X$  for every nonempty  $V \in (\Lambda,s)O(X,\tau)$ .

*Proof.* (1)  $\Rightarrow$  (2): Let V be any nonempty  $\beta(\Lambda, s)$ -open set and U be any nonempty  $\delta s(\Lambda, s)$ -open set. Then,  $[V^{(\Lambda, s)}]_{(\Lambda, s)} \neq \emptyset$  and  $U_{(\Lambda, s)} \neq \emptyset$ . Thus, by Theorem 3.4,

$$\emptyset \neq U_{(\Lambda,s)} \cap [V^{(\Lambda,s)}]_{(\Lambda,s)} \subseteq U \cap [V^{(\Lambda,s)}]_{(\Lambda,s)}$$
$$\subseteq U \cap (V \cup [V^{(\Lambda,s)}]_{(\Lambda,s)}) = U \cap V^{s(\Lambda,s)} \subseteq U \cap V^{\delta s(\Lambda,s)}.$$

Since  $U \in \delta s(\Lambda, s)O(X, \tau)$ ,  $U \cap V \neq \emptyset$ . This shows that  $V^{\delta s(\Lambda, s)} = X$ . (6)  $\Rightarrow$  (1): Let U, V be any nonempty  $\delta s(\Lambda, s)$ -open sets. Since

$$\delta s(\Lambda,s) O(X,\tau) \subseteq s(\Lambda,s) O(X,\tau)$$

and  $V_{(\Lambda,s)} \neq \emptyset$ , we have  $\emptyset \neq U \cap V_{(\Lambda,s)} \subseteq U \cap V$ . This shows that  $V^{\delta s(\Lambda,s)} = X$  for every nonempty  $V \in \delta s(\Lambda,s)O(X,\tau)$ . Thus, by Theorem 3.4,  $(X,\tau)$  is  $S\Lambda_s$ -connected.

The other implications are obvious since  $(\Lambda, s)O(X, \tau) \subseteq \alpha(\Lambda, s)O(X, \tau) \subseteq s(\Lambda, s)O(X, \tau) \cap p(\Lambda, s)O(X, \tau)$  and  $s(\Lambda, s)O(X, \tau) \cup p(\Lambda, s)O(X, \tau) \subseteq \beta(\Lambda, s)O(X, \tau)$ .

**Corollary 3.6.** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- (1)  $(X, \tau)$  is  $S\Lambda_s$ -connected;
- (2)  $U \cap V \neq \emptyset$  for any nonempty sets  $U \in \beta(\Lambda, s)O(X, \tau)$  and  $V \in \delta s(\Lambda, s)O(X, \tau)$ ;
- (3)  $U \cap V \neq \emptyset$  for any nonempty sets  $U \in p(\Lambda, s)O(X, \tau)$  and  $V \in \delta s(\Lambda, s)O(X, \tau)$ ;
- (4)  $U \cap V \neq \emptyset$  for any nonempty sets  $U \in s(\Lambda, s)O(X, \tau)$  and  $V \in \delta s(\Lambda, s)O(X, \tau)$ ;
- (5)  $U \cap V \neq \emptyset$  for any nonempty sets  $U \in \alpha(\Lambda, s)O(X, \tau)$  and  $V \in \delta s(\Lambda, s)O(X, \tau)$ ;

- (6)  $U \cap V \neq \emptyset$  for any nonempty sets  $U \in (\Lambda, s)O(X, \tau)$  and  $V \in \delta s(\Lambda, s)O(X, \tau)$ ;
- (7)  $U \cap V \neq \emptyset$  for any nonempty sets  $U \in \delta s(\Lambda, s)O(X, \tau)$  and  $V \in \delta s(\Lambda, s)O(X, \tau)$ .

*Proof.* This is an immediate consequence of Theorems 3.4 and 3.5.

**Acknowledgment.** This research project was financially supported by Mahasarakham University.

## References

- [1] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., **16**, no. 1, (2023), 336–362.
- [2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri,  $\delta$ -semiopen sets in topological spaces, Topology Proc., **29**, no. 2, (2005), 369–383.
- [3] M. Caldas, D. N. Georgiou, S. Jafari, T. Noiri, More on  $\delta$ -semiopen sets, Note di Matematica, **22**, no. 2, (2003), 1–14.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70**, (1963), 36–41.
- [5] J. H. Park, B. Y. Lee, M. J. Son, On  $\delta$ -semiopen sets in topological spaces, J. Indian Acad. Math., **19**, (1997), 59–67.
- [6] V. Pipitone, G. Russo, Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo (2), 24, (1975), 273–285.
- [7] P. Pue-on, C. Boonpok, On  $\delta s(\Lambda, s)$ -open sets in topological spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 749–753.
- [8] N. Srisarakham, C. Boonpok, Some properties  $S\Lambda_s$ -closed spaces, Int. J. Math. Comput. Sci., **19**, no. 1, (2024), 117–120.
- [9] N. Srisarakham, C. Boonpok, On characterizations of  $\delta p(\Lambda, s)$ - $\mathcal{D}_1$  spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [10] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., **78**, no. 2, (1968), 102–118.