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Abstract

In this article, we present new bounds for determinant inequalities
involving accretive-dissipative matrices.

1 Introduction

Let M, (C) be the algebra of all nxn complex matrices. A matrix S € M, (C)
is called accretive-dissipative if in its Cartesian decomposition S = A + B,
the matrices A and B are positive definite, where A = Re(S) = 2£2 and
B=Im(S) =52

In this paper, we present the accretive-dissipative version for determinant
inequalities and we get some new other bounds. Hadamard inequality states
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that if A = [a;;] € M,,(C) is positive definite, then

i=1

Also, we give some results for accretive-dissipative matrices using the Hadamard
product.

Let A = [a;] € M,(C) and B = [b;;] € M,(C). Then the Hadamard product
(Schur product) of A and B is A o B which is defined as Ao B = [a;;b;;] €
M, (C).

Like usual matrix product, Hadamard product distributes over matrix addi-
tion. That is, for A, B,C € M,(C), we have Ao (B+(C)=AoB+ AoC.
Moreover, Ao (k)B = k(Ao B) = (kA) o B for k € C.

It is known that if A and B are positive definite matrices, then A o B is
positive definite which implies that det(A o B) > 0. Also, it is known that,
if A, B € M,(C) such that A > 0 and B > 0, then

det(Ao B) > (detA)(detB). (1.2)

In this section, we present some lemmas that are needed in the proof of our
main results.

Lemma 1.1. [5] Let B,C € M,,(C) be positive semidefinite. Then
|det(B + iC)| < det(B + C) < 22 |det(B + iC)|. (1.3)

Lemma 1.2. [4] Let A € M,(C) be such that A = H + (K, where H is
positive semidefinite and K is Hermitian, then

|detA| = |det(H +iK)| > |detK| + |detH|. (1.4)
Lemma 1.3. [1] If A, B € M, (C) are positive definite, then

det(I + A+ B) < det(I + A)det(I + B). (1.5)
Lemma 1.4. [6] Let A,B,C be positive semidefinite matrices. Then

det(A+ B + C) + detC > det(A+ C) + det(B + C). (1.6)
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2 Main results
Theorem 2.1. Let T = [t;;] € M,(C) be accretive-dissipative. Then

|detT| < 2% T Ity

J=1

Proof.
Let T'= A+ iB be the Cartesian decomposition of 7. Then

|detT'| = |det(A+ iB)|
< det(A + B) (By Lemmal.l)

H aj; + bj;). (By Inequalityl.1)

Now, notice that for any positive numbers a; and b;, we have a; + b; <
V2|a; +ib;|, for j =1,2,3,--- ,n. So

[ detT| < T V2lay; + iby|
j=1

=23 [ ] Its5l-

j=1

Remark 2.2. [t can be seen that the determinant inequality in Theorem 2.1
s sharp. This can be demonstrated by considering the accretive-dissipative
matriz T = (17, 745"). Note that

\detT| = (detT*T)"/?> =4 =2 H Itil.

Theorem 2.3. If S, T € M, (C) are accretive-dissipative, then
det(I + S+ T)| < 2"|det(I + S)||det(I + T)|.

Proof.
Let S=A+iB and T = C +iD be the Cartesian decompositions of S and
T, respectively. Then
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\det(I + S + T)|

det(I + A+iB+ C+iD)|

det((I + A+ C) +i(B+ D))|

det(I+A+C)+ (B+D))| (By Lemmal.l)

det(I + (A+ B)+ (C+ D))|

< det(l + A+ B)det(I + C + D) (By Lemmal.3)

< 2Y2|det(I + A +iB)|2"?|det(I + C + iD))| (By Lemmal.l)
= 2"|det(I + S)||det(I + T

IN

Corollary 2.4. Let S € M, (C) be accretive-dissipative and let S = A+ iB
be the Cartesian decomposition of S. Then

det(I 4+ S*S + SS*) < (det(I + A?))*(det(I + B?))>.
Proof.
det(I + S*S + SS*) = det(I + 2A* + 2B?)

< det(I +2A%)det(I +2B%)  (By Lemmal.3)
< det(I + A*)det(I + A*)det(I + B*)det(I + B?)

Thus, the result is obvious.

Now, we present an attractive extension for Lemma 1.4 that can be found
in [[6], p.215, Problem 36] using accretive-dissipative matrices.

Theorem 2.5. If S, T and W € M, (C) are accretive-dissipative, then
|det(S + T + W)| + |detW| > 27 (|det(S + W)| + |det(T + W))).

Proof.
Let S = A+iB,T = C+iD and W = E+iF be the Cartesian decompositions
of S, T and W respectively. Then

\det(S+T+W)|+|detW | = |det((A+iB)+(C+iD)+(E+iF))|+|det(E+iF)|
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Zdet(A+C+E)+(B+ D+ F))+2%det(E+F). (By Lemmal.l)
2 (det((A+ B) +(C+ D)+ (E+F)) +det(E + F))
2 (det(A+ B+ E+F)+det(C+D+ E+F)) (By Lemmal.4)
Tn(det((A+E) +(B+F))+det((C+E)+ (D +F)))
“(|det((A + E) + i(B + F))| + |det((C + E) +i(D + F)))|)
" (|det(S + W)| + |det (T + W))).

Theorem 2.6. Let S € M,(C) be accretive-dissipative where S = A+iB is
its Cartesian decomposition and let C € M, (C) be positive definite. Then

|det(S o C')| > detC(detA + detB).

Proof.
We have
|det(S o C)| = |det((A+iB) o C)|
= |det((Ao C) +i(BoC))|
> det(Ao C) +det(BoC) (By Lemmal.2)
> detAdetC + det BdetC (By Inequalityl.2)
= detC(detA + detB).

Theorem 2.7. Let S € M, (C) be accretive-dissipative where S = A+ 1B is
its Cartesian decomposition and let C € M, (C) be positive definite. Then

|det(S o C)| > 27"/%detC(det A + detB).

Proof.
We have
|det(S o C)| = |det((Ao C) +i(BoC))|
> 27"2det((Ao C) + (B o C)) (By Lemmal.l)
> 27"2(det(A o C) + det(B o C)) (By Lemmal.2)
> 27"2(det AdetC + det BdetC') (By Inequalityl.2)
= 27"2detC(detA + detB).

It should be mentioned that the bound for |det(S o C')| in Theorem 2.7 is
better than the bound in Theorem 2.6.
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