Hadamard Determinant Inequalities for Accretive-Dissipative Matrices

Mona Sakkijha ${ }^{1}$, Shatha Hasan ${ }^{2}$
${ }^{1}$ Department of Mathematics
Faculty of Science
The University of Jordan
Amman 11942, Jordan
${ }^{2}$ Department of Applied Science Ajloun College
Al-Balqa Applied University
Ajloun 26816, Jordan

email: m.sakkijha@ju.edu.jo, shatha@bau.edu.jo
(Received June 4, 2023, Accepted July 19, 2023, Published August 31, 2023)

Abstract

In this article, we present new bounds for determinant inequalities involving accretive-dissipative matrices.

1 Introduction

Let $M_{n}(\mathbb{C})$ be the algebra of all $n \times n$ complex matrices. A matrix $S \in M_{n}(\mathbb{C})$ is called accretive-dissipative if in its Cartesian decomposition $S=A+i B$, the matrices A and B are positive definite, where $A=\operatorname{Re}(S)=\frac{S+S^{*}}{2}$ and $B=\operatorname{Im}(S)=\frac{S-S^{*}}{2 i}$.
In this paper, we present the accretive-dissipative version for determinant inequalities and we get some new other bounds. Hadamard inequality states

Key words and phrases: Accretive-dissipative matrices, determinant inequality.
AMS (MOS) Subject Classifications: 47B44, 47A05, 47A63, 47A30.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
that if $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$ is positive definite, then

$$
\begin{equation*}
\operatorname{det} A \leq \prod_{i=1}^{n} a_{i i} \tag{1.1}
\end{equation*}
$$

Also, we give some results for accretive-dissipative matrices using the Hadamard product.
Let $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$ and $B=\left[b_{i j}\right] \in M_{n}(\mathbb{C})$. Then the Hadamard product (Schur product) of A and B is $A \circ B$ which is defined as $A \circ B=\left[a_{i j} b_{i j}\right] \in$ $M_{n}(\mathbb{C})$.
Like usual matrix product, Hadamard product distributes over matrix addition. That is, for $A, B, C \in M_{n}(\mathbb{C})$, we have $A \circ(B+C)=A \circ B+A \circ C$. Moreover, $A \circ(k) B=k(A \circ B)=(k A) \circ B$ for $k \in \mathbb{C}$.
It is known that if A and B are positive definite matrices, then $A \circ B$ is positive definite which implies that $\operatorname{det}(A \circ B) \geq 0$. Also, it is known that, if $A, B \in M_{n}(\mathbb{C})$ such that $A \geq 0$ and $B \geq 0$, then

$$
\begin{equation*}
\operatorname{det}(A \circ B) \geq(\operatorname{det} A)(\operatorname{det} B) . \tag{1.2}
\end{equation*}
$$

In this section, we present some lemmas that are needed in the proof of our main results.

Lemma 1.1. [5] Let $B, C \in M_{n}(\mathbb{C})$ be positive semidefinite. Then

$$
\begin{equation*}
|\operatorname{det}(B+i C)| \leq \operatorname{det}(B+C) \leq 2^{\frac{n}{2}}|\operatorname{det}(B+i C)| \tag{1.3}
\end{equation*}
$$

Lemma 1.2. [4] Let $A \in M_{n}(\mathbb{C})$ be such that $A=H+i K$, where H is positive semidefinite and K is Hermitian, then

$$
\begin{equation*}
|\operatorname{det} A|=|\operatorname{det}(H+i K)| \geq|\operatorname{det} K|+|\operatorname{det} H| . \tag{1.4}
\end{equation*}
$$

Lemma 1.3. [1] If $A, B \in M_{n}(\mathbb{C})$ are positive definite, then

$$
\begin{equation*}
\operatorname{det}(I+A+B) \leq \operatorname{det}(I+A) \operatorname{det}(I+B) \tag{1.5}
\end{equation*}
$$

Lemma 1.4. [6] Let A, B, C be positive semidefinite matrices. Then

$$
\begin{equation*}
\operatorname{det}(A+B+C)+\operatorname{det} C \geq \operatorname{det}(A+C)+\operatorname{det}(B+C) \tag{1.6}
\end{equation*}
$$

2 Main results

Theorem 2.1. Let $T=\left[t_{i j}\right] \in M_{n}(\mathbb{C})$ be accretive-dissipative. Then

$$
|\operatorname{det} T| \leq 2^{\frac{n}{2}} \prod_{j=1}^{n}\left|t_{j j}\right|
$$

Proof.
Let $T=A+i B$ be the Cartesian decomposition of T. Then

$$
\begin{aligned}
|\operatorname{det} T| & =|\operatorname{det}(A+i B)| \\
& \leq \operatorname{det}(A+B) \quad(\text { By } \quad \text { Lemma1.1 }) \\
& \leq \prod_{j=1}^{n}\left(a_{j j}+b_{j j}\right) . \quad(\text { By } \quad \text { Inequality } 1.1)
\end{aligned}
$$

Now, notice that for any positive numbers a_{j} and b_{j}, we have $a_{j}+b_{j} \leq$ $\sqrt{2}\left|a_{j}+i b_{j}\right|$, for $j=1,2,3, \cdots, n$. So

$$
\begin{aligned}
|\operatorname{det} T| & \leq \prod_{j=1}^{n} \sqrt{2}\left|a_{j j}+i b_{j j}\right| \\
& =2^{\frac{n}{2}} \prod_{j=1}^{n}\left|t_{j j}\right| .
\end{aligned}
$$

Remark 2.2. It can be seen that the determinant inequality in Theorem 2.1 is sharp. This can be demonstrated by considering the accretive-dissipative matrix $T=\left(\begin{array}{cc}1+i+i & -1+i \\ -1+i & 1+i\end{array}\right)$. Note that

$$
|\operatorname{det} T|=\left(\operatorname{det} T^{*} T\right)^{1 / 2}=4=2 \prod_{j=1}^{n}\left|t_{j j}\right| .
$$

Theorem 2.3. If $S, T \in M_{n}(\mathbb{C})$ are accretive-dissipative, then

$$
|\operatorname{det}(I+S+T)| \leq 2^{n}|\operatorname{det}(I+S)||\operatorname{det}(I+T)| .
$$

Proof.
Let $S=A+i B$ and $T=C+i D$ be the Cartesian decompositions of S and T, respectively. Then

$$
\begin{align*}
|\operatorname{det}(I+S+T)| & =|\operatorname{det}(I+A+i B+C+i D)| \\
& =|\operatorname{det}((I+A+C)+i(B+D))| \\
& \leq|\operatorname{det}((I+A+C)+(B+D))| \quad(\text { By } \quad \text { Lemma1.1 }) \\
& =|\operatorname{det}(I+(A+B)+(C+D))| \\
& \leq \operatorname{det}(I+A+B) \operatorname{det}(I+C+D) \quad(B y \quad \text { Lemma1.3 }) \\
& \leq 2^{n / 2}|\operatorname{det}(I+A+i B)| 2^{n / 2}|\operatorname{det}(I+C+i D)| \quad(B y \quad \text { Lemma1.1 }) \tag{ByLemma1.1}\\
& =2^{n}|\operatorname{det}(I+S)||\operatorname{det}(I+T)| .
\end{align*}
$$

Corollary 2.4. Let $S \in M_{n}(\mathbb{C})$ be accretive-dissipative and let $S=A+i B$ be the Cartesian decomposition of S. Then

$$
\operatorname{det}\left(I+S^{*} S+S S^{*}\right) \leq\left(\operatorname{det}\left(I+A^{2}\right)\right)^{2}\left(\operatorname{det}\left(I+B^{2}\right)\right)^{2}
$$

Proof.

$$
\begin{aligned}
\operatorname{det}\left(I+S^{*} S+S S^{*}\right) & =\operatorname{det}\left(I+2 A^{2}+2 B^{2}\right) \\
& \leq \operatorname{det}\left(I+2 A^{2}\right) \operatorname{det}\left(I+2 B^{2}\right) \quad(B y \quad \operatorname{Lemma1.3}) \\
& \leq \operatorname{det}\left(I+A^{2}\right) \operatorname{det}\left(I+A^{2}\right) \operatorname{det}\left(I+B^{2}\right) \operatorname{det}\left(I+B^{2}\right)
\end{aligned}
$$

Thus, the result is obvious.

Now, we present an attractive extension for Lemma 1.4 that can be found in [[6], p.215, Problem 36] using accretive-dissipative matrices.

Theorem 2.5. If S, T and $W \in M_{n}(\mathbb{C})$ are accretive-dissipative, then

$$
|\operatorname{det}(S+T+W)|+|\operatorname{det} W| \geq 2^{\frac{-n}{2}}(|\operatorname{det}(S+W)|+|\operatorname{det}(T+W)|)
$$

Proof.
Let $S=A+i B, T=C+i D$ and $W=E+i F$ be the Cartesian decompositions of S, T and W respectively. Then
$|\operatorname{det}(S+T+W)|+|\operatorname{det} W|=|\operatorname{det}((A+i B)+(C+i D)+(E+i F))|+|\operatorname{det}(E+i F)|$

$$
\begin{aligned}
& \geq 2^{\frac{-n}{2}} \operatorname{det}((A+C+E)+(B+D+F))+2^{\frac{-n}{2}} \operatorname{det}(E+F) . \quad(B y \quad \text { Lemma1.1) } \\
& =2^{\frac{-n}{2}}(\operatorname{det}((A+B)+(C+D)+(E+F))+\operatorname{det}(E+F)) \\
& \geq 2^{\frac{-n}{2}}(\operatorname{det}(A+B+E+F)+\operatorname{det}(C+D+E+F)) \quad(B y \quad \text { Lemma1.4 }) \\
& =2^{\frac{-n}{2}}(\operatorname{det}((A+E)+(B+F))+\operatorname{det}((C+E)+(D+F))) \\
& \geq 2^{\frac{-n}{2}}(|\operatorname{det}((A+E)+i(B+F))|+|\operatorname{det}((C+E)+i(D+F))|) \\
& =2^{\frac{-n}{2}}(|\operatorname{det}(S+W)|+|\operatorname{det}(T+W)|) .
\end{aligned}
$$

Theorem 2.6. Let $S \in M_{n}(\mathbb{C})$ be accretive-dissipative where $S=A+i B$ is its Cartesian decomposition and let $C \in M_{n}(\mathbb{C})$ be positive definite. Then

$$
|\operatorname{det}(S \circ C)| \geq \operatorname{det} C(\operatorname{det} A+\operatorname{det} B)
$$

Proof.

We have

$$
\begin{aligned}
|\operatorname{det}(S \circ C)| & =|\operatorname{det}((A+i B) \circ C)| \\
& =|\operatorname{det}((A \circ C)+i(B \circ C))| \\
& \geq \operatorname{det}(A \circ C)+\operatorname{det}(B \circ C) \quad(B y \quad \text { Lemma1.2) } \\
& \geq \operatorname{det} A \operatorname{det} C+\operatorname{det} B \operatorname{det} C \quad(B y \quad \text { Inequality1.2) } \\
& =\operatorname{det} C(\operatorname{det} A+\operatorname{det} B) .
\end{aligned}
$$

Theorem 2.7. Let $S \in M_{n}(\mathbb{C})$ be accretive-dissipative where $S=A+i B$ is its Cartesian decomposition and let $C \in M_{n}(\mathbb{C})$ be positive definite. Then

$$
|\operatorname{det}(S \circ C)| \geq 2^{-n / 2} \operatorname{det} C(\operatorname{det} A+\operatorname{det} B) .
$$

Proof.

We have

$$
\left.\left.\begin{array}{rl}
|\operatorname{det}(S \circ C)| & =|\operatorname{det}((A \circ C)+i(B \circ C))| \\
& \geq 2^{-n / 2} \operatorname{det}((A \circ C)+(B \circ C)) \quad(B y \quad \text { Lemma1.1 }) \\
& \geq 2^{-n / 2}(\operatorname{det}(A \circ C)+\operatorname{det}(B \circ C)) \quad(B y \quad \text { Lemma1.2 }) \\
& \geq 2^{-n / 2}(\operatorname{det} A \operatorname{det} C+\operatorname{det} B \operatorname{det} C) \\
& =2^{-n / 2} \operatorname{det} C(\operatorname{By} \quad \text { Inequality } 1.2)
\end{array}\right)+\operatorname{det} B\right) . \quad . \quad ~
$$

It should be mentioned that the bound for $|\operatorname{det}(S \circ C)|$ in Theorem 2.7 is better than the bound in Theorem 2.6.

References

[1] Rajendra Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[2] Rajendra Bhatia, Positive definite matrices, Princeton University Press, 2007.
[3] Rajendra Bhatia, Fuad Kittaneh, The singular values of A+ B and A+ iB, Linear algebra and its applications, 431, no. 9, (2009), 1502-1508.
[4] Roger Horn, Johnson Charles, Topics in matrix analysis, Cambridge university press, 1994.
[5] Minghua Lin, Reversed determinantal inequalities for accretivedissipative matrices, Math. Inequal. Appl., 12, (2012), 955-958.
[6] Fuzhen Zhang, Matrix theory: basic results and techniques, New York, Springer, 2011.

