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Abstract

In this article, we present new bounds for determinant inequalities

involving accretive-dissipative matrices.

1 Introduction

Let Mn(C) be the algebra of all n×n complex matrices. A matrix S ∈ Mn(C)
is called accretive-dissipative if in its Cartesian decomposition S = A + iB,
the matrices A and B are positive definite, where A = Re(S) = S+S∗

2
and

B = Im(S) = S−S∗

2i
.

In this paper, we present the accretive-dissipative version for determinant
inequalities and we get some new other bounds. Hadamard inequality states
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that if A = [aij ] ∈ Mn(C) is positive definite, then

detA ≤
n
∏

i=1

aii. (1.1)

Also, we give some results for accretive-dissipative matrices using the Hadamard
product.
Let A = [aij ] ∈ Mn(C) and B = [bij ] ∈ Mn(C). Then the Hadamard product
(Schur product) of A and B is A ◦ B which is defined as A ◦ B = [aijbij ] ∈
Mn(C).
Like usual matrix product, Hadamard product distributes over matrix addi-
tion. That is, for A,B,C ∈ Mn(C), we have A ◦ (B + C) = A ◦B + A ◦ C.
Moreover, A ◦ (k)B = k(A ◦B) = (kA) ◦B for k ∈ C.
It is known that if A and B are positive definite matrices, then A ◦ B is
positive definite which implies that det(A ◦ B) ≥ 0. Also, it is known that,
if A,B ∈ Mn(C) such that A ≥ 0 and B ≥ 0, then

det(A ◦B) ≥ (detA)(detB). (1.2)

In this section, we present some lemmas that are needed in the proof of our
main results.

Lemma 1.1. [5] Let B,C ∈ Mn(C) be positive semidefinite. Then

|det(B + iC)| ≤ det(B + C) ≤ 2
n

2 |det(B + iC)|. (1.3)

Lemma 1.2. [4] Let A ∈ Mn(C) be such that A = H + iK, where H is
positive semidefinite and K is Hermitian, then

|detA| = |det(H + iK)| ≥ |detK|+ |detH|. (1.4)

Lemma 1.3. [1] If A,B ∈ Mn(C) are positive definite, then

det(I + A +B) ≤ det(I + A)det(I +B). (1.5)

Lemma 1.4. [6] Let A,B,C be positive semidefinite matrices. Then

det(A+B + C) + detC ≥ det(A+ C) + det(B + C). (1.6)
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2 Main results

Theorem 2.1. Let T = [tij ] ∈ Mn(C) be accretive-dissipative. Then

|detT | ≤ 2
n

2

n
∏

j=1

|tjj|.

Proof.
Let T = A+ iB be the Cartesian decomposition of T . Then

|detT | = |det(A+ iB)|
≤ det(A+B) (By Lemma1.1)

≤
n
∏

j=1

(ajj + bjj). (By Inequality1.1)

Now, notice that for any positive numbers aj and bj , we have aj + bj ≤√
2|aj + ibj |, for j = 1, 2, 3, · · · , n. So

|detT | ≤
n
∏

j=1

√
2|ajj + ibjj |

= 2
n

2

n
∏

j=1

|tjj|.

Remark 2.2. It can be seen that the determinant inequality in Theorem 2.1
is sharp. This can be demonstrated by considering the accretive-dissipative
matrix T =

(

1+i −1+i
−1+i 1+i

)

. Note that

|detT | = (detT ∗T )1/2 = 4 = 2

n
∏

j=1

|tjj|.

Theorem 2.3. If S, T ∈ Mn(C) are accretive-dissipative, then

|det(I + S + T )| ≤ 2n|det(I + S)||det(I + T )|.

Proof.
Let S = A + iB and T = C + iD be the Cartesian decompositions of S and
T , respectively. Then
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|det(I + S + T )| = |det(I + A+ iB + C + iD)|
= |det((I + A+ C) + i(B +D))|
≤ |det((I + A + C) + (B +D))| (By Lemma1.1)

= |det(I + (A+B) + (C +D))|
≤ det(I + A+B)det(I + C +D) (By Lemma1.3)

≤ 2n/2|det(I + A+ iB)|2n/2|det(I + C + iD)| (By Lemma1.1)

= 2n|det(I + S)||det(I + T )|.

Corollary 2.4. Let S ∈ Mn(C) be accretive-dissipative and let S = A + iB

be the Cartesian decomposition of S. Then

det(I + S∗S + SS∗) ≤ (det(I + A2))2(det(I +B2))2.

Proof.

det(I + S∗S + SS∗) = det(I + 2A2 + 2B2)

≤ det(I + 2A2)det(I + 2B2) (By Lemma1.3)

≤ det(I + A2)det(I + A2)det(I +B2)det(I +B2)

Thus, the result is obvious.

Now, we present an attractive extension for Lemma 1.4 that can be found
in [[6], p.215, Problem 36] using accretive-dissipative matrices.

Theorem 2.5. If S, T and W ∈ Mn(C) are accretive-dissipative, then

|det(S + T +W )|+ |detW | ≥ 2
−n

2 (|det(S +W )|+ |det(T +W )|).

Proof.
Let S = A+iB, T = C+iD andW = E+iF be the Cartesian decompositions
of S, T and W respectively. Then

|det(S+T+W )|+|detW | = |det((A+iB)+(C+iD)+(E+iF ))|+|det(E+iF )|
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≥ 2
−n

2 det((A+ C + E) + (B +D + F )) + 2
−n

2 det(E + F ). (By Lemma1.1)

= 2
−n

2 (det((A+B) + (C +D) + (E + F )) + det(E + F ))

≥ 2
−n

2 (det(A+B + E + F ) + det(C +D + E + F )) (By Lemma1.4)

= 2
−n

2 (det((A+ E) + (B + F )) + det((C + E) + (D + F )))

≥ 2
−n

2 (|det((A+ E) + i(B + F ))|+ |det((C + E) + i(D + F ))|)
= 2

−n

2 (|det(S +W )|+ |det(T +W )|).

Theorem 2.6. Let S ∈ Mn(C) be accretive-dissipative where S = A+ iB is
its Cartesian decomposition and let C ∈ Mn(C) be positive definite. Then

|det(S ◦ C)| ≥ detC(detA + detB).

Proof.
We have

|det(S ◦ C)| = |det((A+ iB) ◦ C)|
= |det((A ◦ C) + i(B ◦ C))|
≥ det(A ◦ C) + det(B ◦ C) (By Lemma1.2)

≥ detAdetC + detBdetC (By Inequality1.2)

= detC(detA+ detB).

Theorem 2.7. Let S ∈ Mn(C) be accretive-dissipative where S = A+ iB is
its Cartesian decomposition and let C ∈ Mn(C) be positive definite. Then

|det(S ◦ C)| ≥ 2−n/2detC(detA+ detB).

Proof.
We have

|det(S ◦ C)| = |det((A ◦ C) + i(B ◦ C))|
≥ 2−n/2det((A ◦ C) + (B ◦ C)) (By Lemma1.1)

≥ 2−n/2(det(A ◦ C) + det(B ◦ C)) (By Lemma1.2)

≥ 2−n/2(detAdetC + detBdetC) (By Inequality1.2)

= 2−n/2detC(detA+ detB).

It should be mentioned that the bound for |det(S ◦ C)| in Theorem 2.7 is
better than the bound in Theorem 2.6.
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