

Some properties of $S\Lambda_s$ -closed spaces

Napassanan Srisarakham, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Faculty of Science
Mahasarakham University
Maha Sarakham, 44150, Thailand

email: napassanan.sri@msu.ac.th, chawalit.b@msu.ac.th

(Received May 16, 2023, Accepted July 19, 2023, Published August 31, 2023)

Abstract

This paper is concerned with the concept of $S\Lambda_s$ -closed spaces. In particular, some properties of $S\Lambda_s$ -closed spaces are investigated.

1 Introduction

In 1963, Levine [4] introduced the concept of semi-open sets which is weaker than the concept of open sets in topological spaces. Veličko [8] introduced δ -open sets, which are stronger than open sets. Park et al. [5] offered a new notion called δ -semiopen sets which are stronger than semi-open sets but weaker than δ -open sets and investigated the relationships among several types of these open sets. Caldas et al. [3] investigated some weak separation axioms by utilizing δ -semiopen sets and the δ -semiclosure operator. Caldas et al. [2] investigated the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In [1], the present authors introduced and investigated the concept of (Λ, s) -closed sets by utilizing the notions of Λ_s -sets and semi-closed sets. Srisarakham and Boonpok [7] introduced and studied the notions of $\delta(\Lambda, s)$ -closed sets and $\delta(\Lambda, s)$ -open sets.

Key words and phrases: $\delta s(\Lambda, s)$ -open set, $S\Lambda_s$ -closed space.

Corresponding author: Napassanan Srisarakham.

AMS (MOS) Subject Classifications: 54A05, 54D10. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Moreover, Pue-on and Boonpok [6] introduced and investigated the concepts of $\delta s(\Lambda, s)$ -closed sets and $\delta s(\Lambda, s)$ -open sets. In this paper, we introduce the concept of $S\Lambda_s$ -closed spaces. Furthermore, some properties of $S\Lambda_s$ -closed spaces are discussed.

2 Preliminaries

Let A be a subset of a topological space (X,τ) . A subset A is called $s(\Lambda,s)$ open [1] if $A \subseteq [A_{(\Lambda,s)}]^{(\Lambda,s)}$. The family of all $s(\Lambda,s)$ -open sets in a topological space (X,τ) is denoted by $s(\Lambda,s)O(X,\tau)$. The complement of a $s(\Lambda,s)$ open set is called $s(\Lambda, s)$ -closed. The intersection of all $s(\Lambda, s)$ -closed sets containing A is called the $s(\Lambda, s)$ -closure of A and is denoted by $A^{s(\Lambda, s)}$. A subset A is called $s(\Lambda, s)$ -regular if A is $s(\Lambda, s)$ -open and $s(\Lambda, s)$ -closed. The family of all $s(\Lambda, s)$ -regular sets in a topological space (X, τ) is denoted by $s(\Lambda,s)r(X,\tau)$. A point x of X is called a $\delta(\Lambda,s)$ -cluster point [7] of A if $A \cap [U^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$ for every (Λ,s) -open set U of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [7] of A and is denoted by $A^{\delta(\Lambda,s)}$. A subset A is called $\delta(\Lambda,s)$ -closed [7] if $A=A^{\delta(\Lambda,s)}$. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open. A subset A is called $\delta s(\Lambda, s)$ -open [6] if $A \subseteq [A_{(\Lambda, s)}]^{\delta(\Lambda, s)}$. The complement of a $\delta s(\Lambda, s)$ open set is called $\delta s(\Lambda, s)$ -closed. The family of all $\delta s(\Lambda, s)$ -open sets in a topological space (X,τ) is denoted by $\delta s(\Lambda,s)O(X,\tau)$. A point x of X is called a $\delta s(\Lambda, s)$ -cluster point [6] of A if $A \cap U \neq \emptyset$ for every $\delta s(\Lambda, s)$ -open set U of X containing x. The set of all $\delta s(\Lambda, s)$ -cluster points of A is called the $\delta s(\Lambda, s)$ -closure [6] of A and is denoted by $A^{\delta s(\Lambda, s)}$.

3 Some properties of $S\Lambda_s$ -closed spaces

In this section, we introduce the concept of $S\Lambda_s$ -closed spaces. Moreover, we discuss some properties of $S\Lambda_s$ -closed spaces.

Lemma 3.1. For a subset A of a topological space (X, τ) , the following properties hold:

- (1) If A is a $s(\Lambda, s)$ -regular set, then it is $\delta s(\Lambda, s)$ -open.
- (2) If A is a $\delta s(\Lambda, s)$ -open set, then it is $s(\Lambda, s)$ -open.
- (3) If A is a $s(\Lambda, s)$ -open set, then $A^{s(\Lambda, s)}$ is $s(\Lambda, s)$ -regular.

Let A be a subset of a topological space (X, τ) . A point x of X is called a $\theta s(\Lambda, s)$ -cluster point of A if $A \cap U^{s(\Lambda, s)} \neq \emptyset$ for every $s(\Lambda, s)$ -open set U of X containing x. The set of all $\theta s(\Lambda, s)$ -cluster points of A is called the $\theta s(\Lambda, s)$ closure of A and is denoted by $A^{\theta s(\Lambda,s)}$. A subset A is called $\theta s(\Lambda,s)$ -closed if $A = A^{\theta s(\Lambda,s)}$. The complement of a $\theta s(\Lambda,s)$ -closed set is called $\theta s(\Lambda,s)$ -open.

Lemma 3.2. Let (X,τ) be a topological space. Then, $V^{\theta s(\Lambda,s)} = V^{\delta s(\Lambda,s)} = V^{\delta s(\Lambda,s)}$ $V^{s(\Lambda,s)}$ for each $V \in s(\Lambda,s)O(X,\tau)$.

Definition 3.3. A topological space (X, τ) is said to be $S(\Lambda, s)$ -closed if, for every cover $\{V_{\gamma} \mid \gamma \in \nabla\}$ of X by $s(\Lambda, s)$ -open sets of X, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}^{s(\Lambda,s)}$.

Theorem 3.4. For a topological space (X,τ) , the following properties are equivalent:

- (1) (X, τ) is $S\Lambda_s$ -closed.
- (2) For every $\delta s(\Lambda, s)$ -open cover $\{V_{\gamma} \mid \gamma \in \nabla\}$ of X, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}^{s(\Lambda, s)}$.
- (3) For every $\delta s(\Lambda, s)$ -open cover $\{V_{\gamma} \mid \gamma \in \nabla\}$ of X, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}^{\delta s(\Lambda, s)}$.
- *Proof.* (1) \Rightarrow (2): Suppose that (X, τ) is $S\Lambda_s$ -closed. Let $\{V_{\gamma} \mid \gamma \in \nabla\}$ be a $\delta s(\Lambda, s)$ -open cover of X. By Lemma 3.1, $\delta s(\Lambda, s)O(X, \tau) \subseteq s(\Lambda, s)O(X, \tau)$ and there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}^{s(\Lambda, s)}$.
- $(2)\Rightarrow (3)$: Let $\{V_{\gamma}\mid \gamma\in\nabla\}$ be a $\delta s(\Lambda,s)$ -open cover of X. By Lemma 3.1, $\delta s(\Lambda,s)O(X,\tau)\subseteq s(\Lambda,s)O(X,\tau)$ and it follows from Lemma 3.2 that $V_{\gamma}^{\delta s(\Lambda,s)} = V_{\gamma}^{s(\Lambda,s)}$ for each $\gamma \in \nabla$.
- $(3) \Rightarrow (1) \text{: Let } \{V_{\gamma} \mid \gamma \in \nabla\} \text{ be a } s(\Lambda, s) \text{-open cover of } X \text{. Then, we have } X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}^{s(\Lambda, s)}. \text{ By Lemma 3.1, } V_{\gamma}^{s(\Lambda, s)} \in s(\Lambda, s) r(X, \tau) \subseteq \delta s(\Lambda, s) O(X, \tau)$

and there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\gamma \in \nabla_0} [V_{\gamma}^{s(\Lambda,s)}]^{\delta s(\Lambda,s)}$. By Lemma 3.2, $[V_{\gamma}^{s(\Lambda,s)}]^{\delta s(\Lambda,s)} = [V_{\gamma}^{s(\Lambda,s)}]^{s(\Lambda,s)} = V_{\gamma}^{s(\Lambda,s)}$ and hence $X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}^{s(\Lambda,s)}$. Thus, (X,τ) is $S\Lambda_s$ -closed.

Theorem 3.5. A topological space (X,τ) is $S\Lambda_s$ -closed if and only if for every $\theta s(\Lambda, s)$ -open cover $\{V_{\gamma} \mid \gamma \in \nabla\}$ of X, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}$.

Proof. Let $\{V_{\gamma} \mid \gamma \in \nabla\}$ be a $\theta s(\Lambda, s)$ -open cover of X. For each $x \in X$, there exists $\gamma(x) \in \nabla$ such that $x \in V_{\gamma(x)}$. Since $V_{\gamma(x)}$ is $\theta s(\Lambda, s)$ -open, there exists $G_{\gamma(x)} \in s(\Lambda, s)O(X, \tau)$ such that $x \in G_{\gamma(x)} \subseteq G_{\gamma(x)}^{s(\Lambda, s)} \subseteq V_{\gamma(x)}$. Since $\{G_{\gamma(x)} \mid x \in X\}$ is a $s(\Lambda, s)$ -open cover of X, there exist finite points, say, $x_1, x_2, ..., x_n$ such that $X = \bigcup_{i=1}^n G_{\gamma(x_i)}^{s(\Lambda, s)}$. Thus, $X = \bigcup_{i=1}^n V_{\gamma(x_i)}$. Conversely, let $\{V_{\gamma} \mid \gamma \in \nabla\}$ be a $s(\Lambda, s)$ -open cover of X. By Lemma

Conversely, let $\{V_{\gamma} \mid \gamma \in \nabla\}$ be a $s(\Lambda, s)$ -open cover of X. By Lemma 3.1, $\{V_{\gamma}^{s(\Lambda, s)} \mid \gamma \in \nabla\}$ is a $s(\Lambda, s)$ -regular cover of X and hence a $\theta s(\Lambda, s)$ -open cover of X. Thus, there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\gamma \in \nabla_0} V_{\gamma}^{s(\Lambda, s)}$. This shows that (X, τ) is $S\Lambda_s$ -closed.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., **16**, no. 1, (2023), 336–362.
- [2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri, δ -semiopen sets in topological spaces, Topology Proc., **29**, no. 2, (2005), 369–383.
- [3] M. Caldas, D. N. Georgiou, S. Jafari, T. Noiri, More on δ -semiopen sets, Note di Matematica, **22**, no. 2, (2003), 1–14.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70**, (1963), 36–41.
- [5] J. H. Park, B. Y. Lee, M. J. Son, On δ -semiopen sets in topological spaces, J. Indian Acad. Math., **19**, (1997), 59–67.
- [6] P. Pue-on, C. Boonpok, On $\delta s(\Lambda, s)$ -open sets in topological spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 749–753.
- [7] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [8] N. V. Veličko, *H*-closed topological spaces, Amer. Math. Soc. Transl., **78**, no. 2, (1968), 102–118.