On the Exponential Diophantine equation $11^{x}-17^{y}=z^{2}$

Sutthiwat Thongnak, Theeradach Kaewong, Wariam Chuayjan

Department of Mathematics and Statistics
Faculty of Science
Thaksin University
Phattalung, 93210, Thailand
email: tsutthiwat@tsu.ac.th, theeradachkaewong@gmail.com, cwariam@tsu.ac.th
(Received June 27, 2023, Accepted August 4, 2023, Published August 31, 2023)

Abstract

Let x, y and z be non-negative integers. Using the factoring method, the order of a modulo, and the division algorithm, we show that the exponential Diophantine equation $11^{x}-17^{y}=z^{2}$ has the unique solution $(x, y, z)=(0,0,0)$.

1 Introduction

Exponential Diophantine equations have at least one unknown exponent variable. For over a decade, mathematical researchers have been interested in discussing the existence of integer solutions of exponential Diophantine equations. For example, Acu [1] proved that the exponential Diophantine equation $2^{x}+5^{y}=z^{2}$ has only two non-negative integer solutions, $(x, y, z) \in\{(3,0,3),(2,1,3)\}$. After that, Suvarnamani et al. [9] studied the two Diophantine equations, including $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$ found that neither equation has a non-negatie integer solution. During the period 2012-2017, there were many research articles on the exponential Diophantine

Key words and phrases: Diophantine equation, factoring method, order of a modulo
AMS (MOS) Subject Classifications: 11D61.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
equation [[2], [4], [6], and [8]]. In 2018, Rabago [7] studied $4^{x}-p^{y}=3 z^{2}$ where p is prime, and he determined all solutions of the equations $4^{x}-7^{y}=z^{2}$ and $4^{x}-11^{y}=z^{2}$. After that, Brushtein [3] suggested that $6^{x}-11^{y}=z^{2}$ has no solution when $2 \leqslant x \leqslant 16$. More recently, Thongnak et al. [[10], [11], [12]] solved three equations including $7^{x}-5^{y}=z^{2}, 7^{x}-2^{y}=z^{2}$ and $15^{x}-13^{y}=z^{2}$. These equations motivated us to study other equations.

In this study, we show that the trivial solution is the only non-negative integer solution of the exponential Diophantine equation $11^{x}-17^{y}=z^{2}$.

2 Preliminaries

In this section, we give an important definition and a theorem used in our proof.

Definition 2.1. [5] If n is a positive integer and $\operatorname{gcd}(a, n)=1$, the least positive integer k such that $a^{k} \equiv 1(\bmod n)$ is called the order of a modulo n and is denoted by $\operatorname{ord}_{n} a$.

Theorem 2.2. (Euler's criterion) [5] Let p be an odd prime and $\operatorname{gcd}(a, p)=$ 1. Then a is a quadratic residue of p if and only if $a^{(p-1) / 2} \equiv 1(\bmod p)$.

Theorem 2.3. [5] Let the integer a have order k modulo n. Then $a^{h} \equiv 1$ $(\bmod n)$ if and only if $k \mid h$; in particular, $k \mid \phi(n)$.

Theorem 2.4. (Euclid's Lemma) [5] If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
Theorem 2.5. [5] If $a|c, b| c$ and $\operatorname{gcd}(a, b)=1$, then $a b \mid c$.

3 Main result

Theorem 3.1. The exponential Diophantine equation $11^{x}-17^{y}=z^{2}$ has the unique solution $(x, y, z)=(0,0,0)$ where x, y and z are non-negative integers.

Proof. Let x, y and z be non-negative integers such that

$$
\begin{equation*}
11^{x}-17^{y}=z^{2} \tag{3.1}
\end{equation*}
$$

We will consider four cases as follows.
Case $1, x=y=0$. From (3.1), we obtain $z^{2}=0$ or $z=0$. Therefore, one solution to the equation is $(x, y, z)=(0,0,0)$.
Case $2, x=0$ and $y>0$, (3.1) becomes $z^{2}=1-17^{y}<0$, which is impossible.

Case $3, x>0$ and $y=0$. (3.1) becomes $z^{2}=11^{x}-1$, implying that $z^{2} \equiv 10$ $(\bmod 11)$ which is impossible because $z^{2} \equiv 0,1,3,4,5,9(\bmod 11)$.
Case $4, x>0$ and $y>0$. From (3.1), we have $z^{2} \equiv 11^{x}(\bmod 17)$. So 11^{x} is a quadratic residue of 17 . By Theorem 2.2, it follows that $11^{8 x} \equiv 1(\bmod 17)$ and so $(-1)^{x} \equiv 1(\bmod 17)$. Clearly, x must be even. By substituting $x=2 k, \exists k \in \mathbb{Z}^{+}$into (3.1), we obtain $17^{y}=11^{2 k}-z^{2}$. Factoring, we get $17^{y}=\left(11^{k}-z\right)\left(11^{k}+z\right)$. There exists $\alpha \in\{0,1,2, \ldots, y\}$ such that $11^{k}-z=17^{\alpha}$ and $11^{k}+z=17^{y-\alpha}$, where $\alpha<y-\alpha$. Both equations imply that $2 \cdot 11^{k}=17^{\alpha}+17^{y-\alpha}$ or $2 \cdot 11^{k}=17^{\alpha}\left(1+17^{y-2 \alpha}\right)$. Since $17 \nmid 2 \cdot 11^{k}$, we have $\alpha=0$. As a result,

$$
\begin{equation*}
2 \cdot 11^{k}=1+17^{y} . \tag{3.2}
\end{equation*}
$$

(3.2) implies that $2 \equiv 1+2^{y}(\bmod 5)$ or $2^{y} \equiv 1(\bmod 5)$. Since $\operatorname{ord}_{5} 2=4$, we have $4 \mid y$. Let $y=4 l, \exists l \in \mathbb{Z}^{+}$. By (3.2), we have $6^{4 l} \equiv-1(\bmod 11)$, which implies that $6^{4 l} \equiv 6^{5}(\bmod 11)$. Clearly, ord $_{11} 6=10$, so $4 l \equiv 5(\bmod 10)$. There exists $t \in \mathbb{Z}^{+}$such that $4 l=5+10 t$, which yields $2(2 l-5 t)=5$ which impossible. Combining all cases, we have shown that $(x, y, z)=(0,0,0)$ is the unique solution to the equation.

4 Conclusion

In this article, we have shown that the exponential Diophantine equation $11^{x}-17^{y}=z^{2}$ where x, y and z are non-negative integers has the unique solution $(x, y, z)=(0,0,0)$.

Acknowledgment. We would like to thank reviewers for their careful reading of our manuscript and their useful comments.

References

[1] D. Acu, On a Diophantine Equation $2^{x}+5^{y}=z^{2}$, General Math., 15, (2007), 145-148.
[2] S. Asthana, On the Diophantine equation $8^{x}+113^{y}=z^{2}$, International Journal of Algebra, 11, (2017), 225-230.
[3] N. Burshtein, A Short Note on Solutions of the Diophantine Equations $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$ in Positive Integers x, y, z, Annals of Pure and Applied Mathematics, 19, no. 2, (2019), 55-56.
[4] S. Chotchaisthit, On the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime, American Journal Mathematics and Sciences, 1, (2012), 191-193.
[5] David M. Burton, Elementary Number Theory, 2011.
[6] J. F. T. Rabago, On the Diophantine equation $2^{x}+17^{y}=z^{2}$, Journal of the Indonesian Mathematical Society, 22, no. 2, (2016), 85-88.
[7] J. F. T. Rabago, On the Diophantine equation $4^{x}-p^{y}=3 z^{2}$ where p is a prime, Thai Journal of Mathematics, 16, no. 3, (2018), 643-650.
[8] B. Sroysang, On the Diophantine equation $3^{x}+17^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 89, no. 1, (2013), 111-114.
[9] A. Suvarnamani, A.Singta, S. Chotchaisthit, On two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal, 1, no. 1, (2011), 25-28.
[10] S. Thongnak, W. Chuayjan, T. Kaewong, The solution of the exponential Diophantine equation $7^{x}-5^{y}=z^{2}$, Mathematical Journal, 66, no. 703, (2021), 62-67.
[11] S. Thongnak, W. Chuayjan, T. Kaewong, On the Diophantine Equation $7^{x}-2^{y}=z^{2}$ where x, y and z are non-negative integers, Annals of Pure and Applied Mathematics, 25, no. 2, (2022), 63-66.
[12] S. Thongnak, W. Chuayjan, T. Kaewong, On the Diophantine equation $15^{x}-13^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 27, no. 1, (2023), 23-26.

