International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 49–56

Pseudo NQ-principally Projective Modules

Amaraporn Bumpendee, Sarun Wongwai, Wasana Thongkamhaeng

Department of Mathematics and Computer Science Faculty of Science and Technology Rajamangala University of Technology Thanyaburi Pathum Thani 12110, Thailand

email: amaraporn_b@rmutt.ac.th, wsarun@rmutt.ac.th, wasana_t@rmutt.ac.th

(Received May 24, 2023, Revised June 28, 2023, Accepted June 29, 2023, Published August 31, 2023)

Abstract

Let R be an associative ring with identity. Let M be a right R-module. A right R-module N is called *pseudo nonessential* M-*principally projective* (briefly, pseudo NM-*principally projective*) if, for each $s \in S$ with $s(M) \not\subset^e M$, any R-epimorphism from N to s(M) can be lifted to an R-homomorphism from N to M. M is called *pseudo nonessential quasi-principally projective* (briefly, pseudo NQ-*principally projective*) if, it is pseudo NM-*principally projective*. In this paper, we give some characterizations and properties of pseudo NQ-*principally projective modules*.

1 Introduction

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R-modules. For right R-modules M and N, $Hom_R(M, N)$ denotes the set of all R-homomorphisms from M to N and $S = End_R(M)$ denotes the endomorphism ring of M. If X is a subset of M,

Key words and phrases: Principally Projective Modules, Pseudo NQ-principally Projective Modules and Endomorphism Rings. AMS (MOS) Subject Classifications: 13C10, 13C11, 13C60. The corresponding author is Wasana Thongkamhaeng. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net the right (resp. left) annihilator of X in R (resp. S) is denoted by $r_R(X)$ (resp. $l_S(X)$). A pair (E, ι) is an *injective envelope* of M in case E is an injective R-module and $0 \to M \xrightarrow{\iota} E$ is an essential R-monomorphism. The injective envelope of M is denoted by E(M). By the notation $N \subset^{\oplus} M(N \subset^e M)$ we mean that N is a direct summand (an essential submodule) of M.

Let R be a ring. A right R-module M is called *principally injective* (or P-injective), if every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M. Equivalently, $l_M r_R(a) = Ma$ for all $a \in R$ where l and r are left and right annihilators, respectively. In [4], Nicholson and Yousif studied the structure of principally injective rings and gave some applications. Nicholson, Park, and Yousif [5] extended this notion of principally injective rings to the one for modules.

Sanh et al. [6] extended this notion to modules. A right *R*-module *N* is called *M*-principally injective if every *R*-homomorphism from an *M*-cyclic submodule of *M* to *N* can be extended to an *R*-homomorphism from *M* to *N*. Tansee and Wongwai [7] introduced the dual notion, a right *R*-module *N* is called *M*-principally projective if every *R*-homomorphism from *N* to an *M*-cyclic submodule of *M* can be lifted to an *R*-homomorphism from *N* to an *M*-cyclic submodule of *M* can be lifted to an *R*-homomorphism from *N* to *M*. *M* is called quasi-principally (or semi-) projective if it is *M*-principally projective. In this note we introduce the definition of pseudo NQ-principally projective modules and give some characterizations and properties.

2 Pseudo NM-principally Projective Modules

Recall that a submodule K of a right R module M is essential (or large) in M if, for every nonzero submodule L of M, we have $K \cap L \neq 0$.

Definition 2.1. Let M be a right R-module. A right R-module N is called pseudo nonessential M-principally projective (briefly, pseudo NM-principally projective) if, for each $s \in S$ with $s(M) \not\subset^e M$, any R-epimorphism from Nto s(M) can be lifted to an R-homomorphism from N to M.

Lemma 2.2. (1) Any direct summand of pseudo NM-principally projective module is again pseudo NM-principally projective.

(2) If $s \in S$ with $s(M) \not\subset^e M$, and s(M) is pseudo NM-principally projective, then $Ker(s) \subset^{\oplus} M$ and $s(M) \simeq K \subset^{\oplus} M$.

Proof. (1) By definition.

(2) Let $s \in S$ with $s(M) \not\subset^e M$. Then there exists an *R*-homomorphism

 $\varphi: s(M) \to M$ such that $s\varphi = 1_{s(M)}$. Then by [1, Lemma 5.1], s is a split *R*-epimorphism. There $M = Ker(s) \oplus K$, where $s(M) \simeq K$.

Example 2.3. (1) If N is pseudo NM-principally projective and $N \simeq X$, then X is pseudo NM-principally projective.

(2) Every M-principally projective module is pseudo NM-principally projective.

(3) Let \mathbb{Z} be the set of integers. Then the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$ is pseudo nonessential $\mathbb{Z}/4\mathbb{Z}$ -principally projective, but not $\mathbb{Z}/4\mathbb{Z}$ -projective.

Proposition 2.4. Let M be a right R-module. Then N is pseudo NMprincipally projective if and only if N is pseudo NK-principally projective for every M-cyclic submodule K of M.

Proof. (\Rightarrow) Write K = s(M). Let $g \in End_R(K)$ with $g(K) \not\subset^e K$ and let $\varphi: N \to q(K)$ be an *R*-epimorphism. Since $qs(M) \not\subset^e M$, φ can be lifted to an R-homomorphism $\hat{\varphi}: N \to M$. Hence $s\hat{\varphi}$ lifts φ . Therefore N is pseudo NK-principally projective. (\Leftarrow) is clear.

Proposition 2.5. Let M and N be right R-modules.

Then the following are equivalent:

- (1) N is pseudo NM-principally projective.
- (2) For each $s \in S$ with $s(M) \not\subset^e M$,

$$\{\varphi \in Hom_R(N, M) | \varphi(N) = s(M)\} \subset sHom_R(N, M).$$

(3) For each $s \in S$ with $s(M) \not\subset^e M$,

$$\{\varphi \in Hom_R(N, M) | \varphi(N) = s(M)\} = s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = M\}.$$

Proof. (1) \Rightarrow (2) Let $s \in S$ with $s(M) \not\subset^e M$ and let $\varphi \in Hom_R(N, M)$ such that $\varphi(N) = s(M)$. Since N is pseudo NM-principally projective, there exists an R-homomorphism $\hat{\varphi}: N \to M$ such that $\varphi = s\hat{\varphi}$. It follows that $\varphi \in sHom_B(N, M).$

(2) \Rightarrow (3) It is clear that $s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = M\} \subset \{\varphi \in \{\varphi \in M\}\}$ $Hom_R(N,M)|\varphi(N) = s(M)\}$. Conversely, let $\alpha \in Hom_R(N,M)$ such that $\alpha(N) = s(M)$. Then by (2) we have $\alpha \in sHom_B(N, M)$, so $\alpha = s\hat{\varphi}$ for some $\hat{\varphi} \in Hom_R(N, M)$. Then $\alpha = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in Hom_R(N, M) | \varphi(N) + Ker(s) = s\hat{\varphi} \in s\{\varphi \in g, \varphi \in s\{\varphi \in g, \varphi \in s\} \}$ M

(3) \Rightarrow (1) Let $s \in S$ with $s(M) \not\subset^e M$ and let $\varphi : N \to s(M)$ be an Repimorphism. Then $\varphi(N) = s(M)$ and hence by (3) we have $\varphi = s\hat{\varphi}$ for

some *R*-homomorphism $\hat{\varphi} : N \to M$ with $\hat{\varphi}(N) + Ker(s) = M$. Then *N* is pseudo *NM*-principally projective.

Corollary 2.6. Let M be an injective module.

If every nonessential M-cyclic submodule of M is injective, then every submodule of pseudo NM-principally projective is pseudo NM-principally projective.

Proof. Clear.

3 Pseudo NQ-principally Projective Modules

A right *R*-module *M* is called pseudo nonessential quasi-principally projective (briefly, pseudo NQ-principally projective) if it is pseudo NM-principally projective. It is clear that, any direct summand of a pseudo NQ-principally projective module is again pseudo NQ-principally projective.

Proposition 3.1. Let M be a right R-modules.

Then the following are equivalent: (1) M is pseudo NQ-principally projective. (2) For each $s, t \in S$ with $t(M) \not\subset^e M$, if t(M) = s(M) then sS = tS. (3) For each $s, t \in S$ with $ts(M) \not\subset^e M$,

$$\{f \in S | tf(M) = ts(M)\} \subset sS + \{v \in S | v(M) \subset Ker(t)\}.$$

Proof. (1) \Rightarrow (2) Let $s, t \in S$ with $t(M) \not\subset^e M$ and t(M) = s(M). Then by (1), s can be lifted to an R-homomorphism $\hat{\varphi} \in S$. Hence $s = t\hat{\varphi} \in tS$, so $sS \subset tS$. The same argument shows that $tS \subset sS$.

(2) \Rightarrow (3) Let $g \in S$ such that tg(M) = ts(M). Since $ts(M) \not\subset^e M$, by (2) we have tgS = tsS. Then $tg \in tsS$ so tg = tsf for some $f \in S$. It follows that g - sf = h for some $h \in S$ with $h(M) \subset Ker(t)$. Hence $g = sf + h \in sS + \{v \in S | v(M) \subset Ker(t)\}.$

(3) \Rightarrow (1) Let $s \in S$ with $s(M) \not\subset^e M$ and let $\varphi : M \to s(M)$ be an R-epimorphism. Then $\varphi(M) = s(M)$ and hence by (3) and put t = 1, $\{f \in S | f(M) = s(M)\} \subset sS + \{v \in S | v(M) \subset Ker(1)\} = sS$. Hence $\varphi \in sS$ so $\varphi = s\hat{\varphi}$ for some $\hat{\varphi} \in S$. Then N is pseudo NM-principally projective.

Lemma 3.2. Let P be a projective module and $P \oplus K$ is pseudo NQ-principally projective. If there is an R-epimorphism $g: P \to K$, then K is projective.

Proof. Let $\pi_1 : P \oplus K \to P$ be the projection map. Since $P \oplus K$ is pseudo NQ-principally projective and $g\pi_1(P \oplus K) \not\subset^e P \oplus K$, there exists an Rhomomorphism $\beta : P \oplus K \to P \oplus K$ such that $g\pi_1\beta = \pi_2$ where $\pi_2 : P \oplus K \to K$ K is the projection map. Then $1_k = \pi_2 \iota_2 = g\pi_1\beta\iota_2$ where $\iota_2 : K \to P \oplus K$ is the injective map. Put $\hat{\varphi} = \pi_1\beta\iota_2$, so $1_k = g\hat{\varphi}$. Then by [1, Lemma 5.1], gis a split R-epimorphism. Hence there exists a submodule X of P such that $X \simeq K$ and $P = Ker(f) \oplus X$. Therefore K is projective.

Lemma 3.3. Let E be an injective module and $E \oplus N$ is quasi-principally injective. If there is an R-monomorphism $\varphi : N \to E$, then N is injective.

Proof. Since N is an $E \oplus N$ -cyclic submodule of $E \oplus N$, there exists an Rhomomorphism $\alpha : E \oplus N \to E \oplus N$ such that $\alpha \iota_1 \varphi = \iota_2$ where $\iota_1 : E \to E \oplus N$ and $\iota_2 : N \to E \oplus N$ are the injection maps. Then $\pi_2 \alpha \iota_1 \varphi = \pi_2 \iota_2 = 1_N$ where $\pi_2 : E \oplus N \to N$ is the projection map. Hence the R-monomorphism φ splits. It follows that $E = \varphi(N) \oplus D$ for some a submodule D of E. Then $\varphi(N)$ is injective and hence N is injective.

A ring R is right hereditary [1] in case of its right ideals is projective. Equivalently, every submodule of a projective

Proposition 3.4. The following conditions are equivalent for a ring R.

(1) R is right hereditary.

(2) Every submodule of a projective R-module is pseudo NQ-principally projective.

(3) Every factor module of an injective R-module is quasi-principally injective.

(4) Every sum of two injective submodules of an R-module is quasi-principally injective.

(5) Every sum of two isomorphic injective submodules of an R-module is quasi-principally injective.

Proof. $(1) \Rightarrow (2), (1) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ are clear.

 $(2) \Rightarrow (1)$ Let P be a projective R-module and let K be a submodule of P. We must show that K is projective. Let $\varphi : F \to K$ be an R-epimorphism, where F is a free module. Then $F \oplus K$ is a submodule of a projective Rmodule $F \oplus P$. Then by (2), $F \oplus K$ is pseudo NQ-principally projective. Hence K is projective by Lemma 3.2. Therefore R is right hereditary. $(3) \Rightarrow (1)$ Let E be an injective R-module, let N be a submodule of E, and let $\eta : E \to E/N$ be the natural R-epimorphism. Then we have an R-epimorphism:

$$\iota + \eta : E(E/N) \oplus E \to E(E/N) \oplus E/N.$$

It follows that $(E(E/N) \oplus E)/Ker(\iota + \eta) \simeq E(E/N) \oplus E/N$. Then by (3), $(E(E/N) \oplus E)/Ker(\iota + \eta)$ is quasi-principally injective. Hence $E(E/N) \oplus E/N$ is quasi-principally injective and we have an *R*-monomorphism, $E/N \to E(E/N)$ so E/N is injective by Lemma 3.3. Therefore *R* is right hereditary. (3) \Rightarrow (4) Let E_1 and E_2 be two injective submodules of an *R*-module *M*. Since $E_1 \oplus E_2$ is injective and there exists an *R*-epimorphism $\alpha : E_1 \oplus E_2 \to E_1 + E_2$, then $(E_1 \oplus E_2)/Ker(\alpha)$ is quasi-principally injective by (3). Since $(E_1 \oplus E_2)/Ker(\alpha) \simeq E_1 + E_2$, $E_1 + E_2$ is quasi-principally injective. (5) \Rightarrow (3) By the similar proof to (6) \Rightarrow (4) of Theorem 4 in [9].

A right *R*-module *M* is called a *duo module* if every submodule of *M* is fully invariant. *M* satisfies (D_2) [3] if, *A* is a submodule of *M* such that M/Ais isomorphic to a direct summand of *M*, then *A* is a direct summand of *M*, *M* satisfies (D_3) if, M_1 and M_2 are direct summands of *M* with $M_1 + M_2 = M$ then $M_1 \cap M_2$ is a direct summand of *M*. The next lemma shows that conditions (D_2) and (D_3) also hold in pseudo *NQ* principally projective.

Lemma 3.5. If M is a pseudo NQ-principally projective module, then M satisfies (D_2) and (D_3)

Proof. (D_2) Let B be a direct summand of M, A a submodule of M and let $\varphi: M/A \to B$ be an R-isomorphism. Define $\alpha: M \to B$ by $\alpha(m) = \alpha \eta(m)$ for every $m \in M$ and $\eta: M \to M/A$ is the natural R-epimorphism. It is clear that α is an R-epimorphism and $Ker(\alpha) = A$. Since B is a direct summand of M and M is pseudo NQ-principally projective, B is pseudo NM-principally projective by Lemma 2.2. We have B is a nonessential M-cyclic submodule of M, then there exists an R-homomorphism $\beta: B \to M$ such that $\alpha\beta = 1_B$. Then α is a split R-epimorphism. It follows that $M = Ker(\alpha) \oplus K$ for some a submodule K of M. Then A is a direct summand of M.

 (D_3) Let A and B are direct summand of M with A + B = M. Write $M = A \oplus A'$ where A' is a submodule of M. Since $A' \simeq (A + B)/A$ and $(A + B)/A \simeq B/(A \cap B)$, $A \cap B$ is a direct summand of M by (D_2)

Lemma 3.6. If M is duo pseudo NQ-principally projective and $s \in S$ with $M = s(M) \oplus X$, then X = Ker(s).

Proof. Since M is duo, $s(X) \subset s(M) \cap X = 0$, so $X \subset Ker(s)$. Now we have M = s(M) + Ker(s) and $M/Ker(s) \simeq s(M)$. Then $Ker(s) \subset^{\oplus} M$ by (D_2) . It follows that $s(M) \cap Ker(s) \subset^{\oplus} M$ by (D_3) . Write $M = (s(M) \cap Ker(s)) \oplus N$. Since M is duo, $s(M) = s(N) \subset s(M) \cap N$ so $s(M) \subset N$. It follows that $s(M) \cap Ker(s) = 0$. Therefore $M = s(M) \oplus Ker(s)$, and X = Ker(s).

M is said [8] to have the summand intersection property (SIP) if the intersection of two direct summands is again a direct summand. The module M is said [2] to have the summand sum property (SSP) if the sum of any two summands of M is again a summand.

A right *R*-module *M* satisfies (C_2) [3] if, a submodule *A* of *M* is isomorphic to a direct summand of *M*, then *A* is a direct summand of *M*. *M* satisfies (C_3) if, M_1 and M_2 are direct summands of *M* such that $M_1 \cap M_2 = 0$ then $M_1 \oplus M_2$ is a direct summand of *M*. It is clear that if, *M* satisfies (C_2) then it satisfies (C_3) .

Proposition 3.7. Let M be a pseudo NQ-principally projective module. If M is a quasi-principally injective and $s \in S$ with $s(M) \not\subset^e M$, then the following statements are equivalent:

(1) s(M) is a direct summand of M.

(2) s(M) is pseudo NM-principally projective.

(3) s(M) is M-principally injective.

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (3)$ Since $s(M) \not\subset^e M$ and by (2), there exists an *R*-homomorphism $\alpha : s(M) \to M$ such that $s\alpha = 1_{s(M)}$ so *s* splits. Then $M = Ker(s) \oplus D$ for some submodule *D* of and $s(M) \simeq D$. Then s(M) is a direct summand of *M* by (C_2) hence s(M) is *M*-principally injective.

(3) \Rightarrow (1) Since s(M) is *M*-principally injective, $\iota \alpha = 1_{s(M)}$ for some an *R*-homomorphism $\alpha : M \to s(M)$ and $\iota : s(M) \to M$ is the inclusion map. It follows that $s(M) \subset^{\oplus} M$.

Proposition 3.8. Let M be a duo and pseudo NQ-principally projective module. Then

(1) M has the (SIP).
(2) In addition, if M has the property (C₂), then M has the (SSP).

Proof. (1) Write $M = s(M) \oplus K$ and $M = t(M) \oplus L$. Since M is duo, $s(M) = s(t(M)) \oplus L) = s(t(M)) + s(L) \subset (s(M) \cap t(M)) \oplus (s(M) \cap L) \subset s(M)$. Then $s(M) \cap t(M) \subset^{\oplus} M$. (2) From (1), we write $M = (s(M) \cap t(M)) \oplus N$. Then $t(M) = t(M) \cap ((s(M) \cap t(M)) \oplus N) = t(M) \cap s(M) \oplus t(M) \cap N$ by the Modular law. Hence $s(M) + t(M) = s(M) + (s(M) \cap t(M) \oplus t(M) \cap N) = s(M) \oplus$ $t(M) \cap N$. Since $M = (s(M) \cap t(M)) \oplus N \subset t(M) + N \subset M, t(M) + N = M$. Then $t(M) \cap N \subset^{\oplus} M$ by (D_3) . Therefore $s(M) + t(M) \subset^{\oplus} M$. □ **Theorem 3.9.** Let M be a pseudo NQ-principally projective module. Then S is regular if and only if for each $s \in S$, there exists an idempotent $\alpha \in S$ such that $s(M) = \alpha(M)$.

Proof. (\Rightarrow) Clear.

(⇐) Let $s \in S$. Then $s(M) = \alpha(M)$ where $\alpha \in S$ is an idempotent. Since $s(M) \subset^{\oplus} M$, $sS = \alpha S$ by Proposition 3.1. Therefore $sS \subset^{\oplus} S$.

Acknowledgment. The authors would like to thank the referees for their valuable suggestions and comments which helped to improve the quality and readability of the paper.

References

- [1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, 1992.
- [2] J. L. Garcia, Properties of direct summands of modules, Comm. Algebra, 17, no. 1, (1989), 73-92.
- [3] S. H. Mohamed, B. J. Muller, Continuous and Discrete Modules, 1990.
- [4] W. K. Nicholson, M. F. Yousif, Principally Injective Rings, J. Algebra, 174, (1995), 77–93.
- [5] W. K. Nicholson, J. K. Park, M. F. Yousif, Principally quasi-injective modules, Comm. Algebra, 27, no. 4, (1999), 1683-1693.
- [6] N. V. Sanh, K. P. Shum, S. Dhompongsa, S. Wongwai, On quasiprincipally injective modules, Algebra Coll., 6, no. 3, (1999), 269–276.
- [7] H. Tansee, S. Wongwai, A Note on Semi-Projective Modules, Kyungpook Math. J., 42, (2002), 369–380.
- [8] G. V. Wilson, Modules with the summand intersection property, Comm. Algebra, 14, (1986), 21–38.
- [9] Weimin Xue, Characterization of rings using direct-projective modules and direct-injective modules, 87, (1993), 99–104.