Pseudo $N Q$-principally Projective Modules

Amaraporn Bumpendee, Sarun Wongwai, Wasana Thongkamhaeng
Department of Mathematics and Computer Science Faculty of Science and Technology
Rajamangala University of Technology Thanyaburi Pathum Thani 12110, Thailand
email: amaraporn_b@rmutt.ac.th, wsarun@rmutt.ac.th, wasana_t@rmutt.ac.th

(Received May 24, 2023, Revised June 28, 2023,
Accepted June 29, 2023, Published August 31, 2023)

Abstract

Let R be an associative ring with identity. Let M be a right R-module. A right R-module N is called pseudo nonessential M principally projective (briefly, pseudo NM-principally projective) if, for each $s \in S$ with $s(M) \not \subset^{e} M$, any R-epimorphism from N to $s(M)$ can be lifted to an R-homomorphism from N to $M . M$ is called pseudo nonessential quasi-principally projective (briefly, pseudo $N Q$ principally projective) if, it is pseudo $N M$-principally projective. In this paper, we give some characterizations and properties of pseudo $N Q$-principally projective modules.

1 Introduction

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R-modules. For right R-modules M and N, $\operatorname{Hom}_{R}(M, N)$ denotes the set of all R-homomorphisms from M to N and $S=\operatorname{End}_{R}(M)$ denotes the endomorphism ring of M. If X is a subset of M,

Key words and phrases: Principally Projective Modules, Pseudo
$N Q$-principally Projective Modules and Endomorphism Rings.
AMS (MOS) Subject Classifications: 13C10, 13C11, 13C60.
The corresponding author is Wasana Thongkamhaeng.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
the right (resp. left) annihilator of X in R (resp. S) is denoted by $r_{R}(X)$ (resp. $l_{S}(X)$). A pair (E, ι) is an injective envelope of M in case E is an injective R-module and $0 \rightarrow M \xrightarrow{\iota} E$ is an essential R-monomorphism. The injective envelope of M is denoted by $E(M)$. By the notation $N \subset^{\oplus} M\left(N \subset^{e} M\right)$ we mean that N is a direct summand (an essential submodule) of M.

Let R be a ring. A right R-module M is called principally injective (or P-injective), if every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M. Equivalently, $l_{M} r_{R}(a)=M a$ for all $a \in R$ where l and r are left and right annihilators, respectively. In [4], Nicholson and Yousif studied the structure of principally injective rings and gave some applications. Nicholson, Park, and Yousif [5] extended this notion of principally injective rings to the one for modules.

Sanh et al. [6] extended this notion to modules. A right R-module N is called M-principally injective if every R-homomorphism from an M-cyclic submodule of M to N can be extended to an R-homomorphism from M to N. Tansee and Wongwai [7] introduced the dual notion, a right R-module N is called M-principally projective if every R-homomorphism from N to an M-cyclic submodule of M can be lifted to an R-homomorphism from N to $M . M$ is called quasi-principally (or semi-) projective if it is M-principally projective. In this note we introduce the definition of pseudo $N Q$-principally projective modules and give some characterizations and properties.

2 Pseudo NM-principally Projective Modules

Recall that a submodule K of a right R module M is essential (or large) in M if, for every nonzero submodule L of M, we have $K \cap L \neq 0$.
Definition 2.1. Let M be a right R-module. A right R-module N is called pseudo nonessential M-principally projective (briefly, pseudo NM-principally projective) if, for each $s \in S$ with $s(M) \not \subset e M$, any R-epimorphism from N to $s(M)$ can be lifted to an R-homomorphism from N to M.
Lemma 2.2. (1) Any direct summand of pseudo NM-principally projective module is again pseudo NM-principally projective.
(2) If $s \in S$ with $s(M) \not \subset^{e} M$, and $s(M)$ is pseudo $N M$-principally projective, then $\operatorname{Ker}(s) \subset^{\oplus} M$ and $s(M) \simeq K \subset^{\oplus} M$.
Proof. (1) By definition.
(2) Let $s \in S$ with $s(M) \not \subset^{e} M$. Then there exists an R-homomorphism
$\varphi: s(M) \rightarrow M$ such that $s \varphi=1_{s(M)}$. Then by [1, Lemma 5.1], s is a split R-epimorphism. There $M=\operatorname{Ker}(s) \oplus K$, where $s(M) \simeq K$.

Example 2.3. (1) If N is pseudo $N M$-principally projective and $N \simeq X$, then X is pseudo NM-principally projective.
(2) Every M-principally projective module is pseudo NM-principally projective.
(3) Let \mathbb{Z} be the set of integers. Then the \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$ is pseudo nonessential $\mathbb{Z} / 4 \mathbb{Z}$-principally projective, but not $\mathbb{Z} / 4 \mathbb{Z}$-projective.

Proposition 2.4. Let M be a right R-module. Then N is pseudo NMprincipally projective if and only if N is pseudo NK-principally projective for every M-cyclic submodule K of M.

Proof. (\Rightarrow) Write $K=s(M)$. Let $g \in \operatorname{End}_{R}(K)$ with $g(K) \not \subset^{e} K$ and let $\varphi: N \rightarrow g(K)$ be an R-epimorphism. Since $g s(M) \not \subset^{e} M, \varphi$ can be lifted to an R-homomorphism $\hat{\varphi}: N \rightarrow M$. Hence $s \hat{\varphi}$ lifts φ. Therefore N is pseudo $N K$-principally projective.
(\Leftarrow) is clear.
Proposition 2.5. Let M and N be right R-modules.
Then the following are equivalent:
(1) N is pseudo $N M$-principally projective.
(2) For each $s \in S$ with $s(M) \not \subset^{e} M$,

$$
\left\{\varphi \in \operatorname{Hom}_{R}(N, M) \mid \varphi(N)=s(M)\right\} \subset s \operatorname{Hom}_{R}(N, M)
$$

(3) For each $s \in S$ with $s(M) \not \subset^{e} M$,

$$
\begin{gathered}
\left\{\varphi \in \operatorname{Hom}_{R}(N, M) \mid \varphi(N)=s(M)\right\}=s\{\varphi \in \\
\left.\operatorname{Hom}_{R}(N, M) \mid \varphi(N)+\operatorname{Ker}(s)=M\right\}
\end{gathered}
$$

Proof. (1) $\Rightarrow(2)$ Let $s \in S$ with $s(M) \not \subset^{e} M$ and let $\varphi \in \operatorname{Hom}_{R}(N, M)$ such that $\varphi(N)=s(M)$. Since N is pseudo $N M$-principally projective, there exists an R-homomorphism $\hat{\varphi}: N \rightarrow M$ such that $\varphi=s \hat{\varphi}$. It follows that $\varphi \in \operatorname{sHom}_{R}(N, M)$.
$(2) \Rightarrow(3)$ It is clear that $s\left\{\varphi \in \operatorname{Hom}_{R}(N, M) \mid \varphi(N)+\operatorname{Ker}(s)=M\right\} \subset\{\varphi \in$ $\left.H o m_{R}(N, M) \mid \varphi(N)=s(M)\right\}$. Conversely, let $\alpha \in \operatorname{Hom}_{R}(N, M)$ such that $\alpha(N)=s(M)$. Then by (2) we have $\alpha \in s \operatorname{Hom}_{R}(N, M)$, so $\alpha=s \hat{\varphi}$ for some $\hat{\varphi} \in \operatorname{Hom}_{R}(N, M)$. Then $\alpha=s \hat{\varphi} \in s\left\{\varphi \in \operatorname{Hom}_{R}(N, M) \mid \varphi(N)+\operatorname{Ker}(s)=\right.$ M\}
(3) \Rightarrow (1) Let $s \in S$ with $s(M) \not \subset^{e} M$ and let $\varphi: N \rightarrow s(M)$ be an R epimorphism. Then $\varphi(N)=s(M)$ and hence by (3) we have $\varphi=s \hat{\varphi}$ for
some R-homomorphism $\hat{\varphi}: N \rightarrow M$ with $\hat{\varphi}(N)+\operatorname{Ker}(s)=M$. Then N is pseudo $N M$-principally projective.

Corollary 2.6. Let M be an injective module.
If every nonessential M-cyclic submodule of M is injective, then every submodule of pseudo NM-principally projective is pseudo NM-principally projective.

Proof. Clear.

3 Pseudo $N Q$-principally Projective Modules

A right R-module M is called pseudo nonessential quasi-principally projective (briefly, pseudo $N Q$-principally projective) if it is pseudo $N M$-principally projective. It is clear that, any direct summand of a pseudo $N Q$-principally projective module is again pseudo $N Q$-principally projective.

Proposition 3.1. Let M be a right R-modules.
Then the following are equivalent:
(1) M is pseudo $N Q$-principally projective.
(2) For each $s, t \in S$ with $t(M) \not \subset^{e} M$, if $t(M)=s(M)$ then $s S=t S$.
(3) For each $s, t \in S$ with $t s(M) \not \subset e M$,

$$
\{f \in S \mid t f(M)=t s(M)\} \subset s S+\{v \in S \mid v(M) \subset \operatorname{Ker}(t)\}
$$

Proof. (1) \Rightarrow (2) Let $s, t \in S$ with $t(M) \not \subset^{e} M$ and $t(M)=s(M)$. Then by (1), s can be lifted to an R-homomorphism $\hat{\varphi} \in S$. Hence $s=t \hat{\varphi} \in t S$, so $s S \subset t S$. The same argument shows that $t S \subset s S$.
$(2) \Rightarrow(3)$ Let $g \in S$ such that $t g(M)=t s(M)$. Since $t s(M) \not \subset e M$, by (2) we have $t g S=t s S$. Then $t g \in t s S$ so $t g=t s f$ for some $f \in S$. It follows that $g-s f=h$ for some $h \in S$ with $h(M) \subset \operatorname{Ker}(t)$. Hence $g=s f+h \in s S+\{v \in S \mid v(M) \subset \operatorname{Ker}(t)\}$.
(3) \Rightarrow (1) Let $s \in S$ with $s(M) \not \subset^{e} M$ and let $\varphi: M \rightarrow s(M)$ be an R-epimorphism. Then $\varphi(M)=s(M)$ and hence by (3) and put $t=1$, $\{f \in S \mid f(M)=s(M)\} \subset s S+\{v \in S \mid v(M) \subset \operatorname{Ker}(1)\}=s S$. Hence $\varphi \in s S$ so $\varphi=s \hat{\varphi}$ for some $\hat{\varphi} \in S$. Then N is pseudo $N M$-principally projective.

Lemma 3.2. Let P be a projective module and $P \oplus K$ is pseudo $N Q$-principally projective. If there is an R-epimorphism $g: P \rightarrow K$, then K is projective.

Proof. Let $\pi_{1}: P \oplus K \rightarrow P$ be the projection map. Since $P \oplus K$ is pseudo $N Q$-principally projective and $g \pi_{1}(P \oplus K) \not \subset^{e} P \oplus K$, there exists an R homomorphism $\beta: P \oplus K \rightarrow P \oplus K$ such that $g \pi_{1} \beta=\pi_{2}$ where $\pi_{2}: P \oplus K \rightarrow$ K is the projection map. Then $1_{k}=\pi_{2} \iota_{2}=g \pi_{1} \beta \iota_{2}$ where $\iota_{2}: K \rightarrow P \oplus K$ is the injective map. Put $\hat{\varphi}=\pi_{1} \beta \iota_{2}$, so $1_{k}=g \hat{\varphi}$. Then by [1, Lemma 5.1], g is a split R-epimorphism. Hence there exists a submodule X of P such that $X \simeq K$ and $P=\operatorname{Ker}(f) \oplus X$. Therefore K is projective.

Lemma 3.3. Let E be an injective module and $E \oplus N$ is quasi-principally injective. If there is an R-monomorphism $\varphi: N \rightarrow E$, then N is injective.

Proof. Since N is an $E \oplus N$-cyclic submodule of $E \oplus N$, there exists an R homomorphism $\alpha: E \oplus N \rightarrow E \oplus N$ such that $\alpha \iota_{1} \varphi=\iota_{2}$ where $\iota_{1}: E \rightarrow E \oplus N$ and $\iota_{2}: N \rightarrow E \oplus N$ are the injection maps. Then $\pi_{2} \alpha \iota_{1} \varphi=\pi_{2} \iota_{2}=1_{N}$ where $\pi_{2}: E \oplus N \rightarrow N$ is the projection map. Hence the R-monomorphism φ splits. It follows that $E=\varphi(N) \oplus D$ for some a submodule D of E. Then $\varphi(N)$ is injective and hence N is injective.

A ring R is right hereditary [1] in case of its right ideals is projective. Equivalently, every submodule of a projective

Proposition 3.4. The following conditions are equivalent for a ring R.
(1) R is right hereditary.
(2) Every submodule of a projective R-module is pseudo $N Q$-principally projective.
(3) Every factor module of an injective R-module is quasi-principally injective.
(4) Every sum of two injective submodules of an R-module is quasi-principally injective.
(5) Every sum of two isomorphic injective submodules of an R-module is quasi-principally injective.

Proof. (1) $\Rightarrow(2),(1) \Rightarrow(3)$ and $(4) \Rightarrow(5)$ are clear.
$(2) \Rightarrow(1)$ Let P be a projective R-module and let K be a submodule of P. We must show that K is projective. Let $\varphi: F \rightarrow K$ be an R-epimorphism, where F is a free module. Then $F \oplus K$ is a submodule of a projective R module $F \oplus P$. Then by (2), $F \oplus K$ is pseudo $N Q$-principally projective. Hence K is projective by Lemma 3.2. Therefore R is right hereditary. (3) $\Rightarrow(1)$ Let E be an injective R-module, let N be a submodule of E, and let $\eta: E \rightarrow E / N$ be the natural R-epimorphism. Then we have an R-epimorphism:

$$
\iota+\eta: E(E / N) \oplus E \rightarrow E(E / N) \oplus E / N
$$

It follows that $(E(E / N) \oplus E) / \operatorname{Ker}(\iota+\eta) \simeq E(E / N) \oplus E / N$. Then by (3), $(E(E / N) \oplus E) / \operatorname{Ker}(\iota+\eta)$ is quasi-principally injective. Hence $E(E / N) \oplus$ E / N is quasi-principally injective and we have an R-monomorphism, $E / N \rightarrow$ $E(E / N)$ so E / N is injective by Lemma 3.3. Therefore R is right hereditary. (3) $\Rightarrow(4)$ Let E_{1} and E_{2} be two injective submodules of an R-module M. Since $E_{1} \oplus E_{2}$ is injective and there exists an R-epimorphism $\alpha: E_{1} \oplus E_{2} \rightarrow$ $E_{1}+E_{2}$, then $\left(E_{1} \oplus E_{2}\right) / \operatorname{Ker}(\alpha)$ is quasi-principally injective by (3). Since $\left(E_{1} \oplus E_{2}\right) / \operatorname{Ker}(\alpha) \simeq E_{1}+E_{2}, E_{1}+E_{2}$ is quasi-principally injective.
$(5) \Rightarrow(3)$ By the similar proof to $(6) \Rightarrow(4)$ of Theorem 4 in [9].
A right R-module M is called a duo module if every submodule of M is fully invariant. M satisfies $\left(D_{2}\right)[3]$ if, A is a submodule of M such that M / A is isomorphic to a direct summand of M, then A is a direct summand of M, M satisfies $\left(D_{3}\right)$ if, M_{1} and M_{2} are direct summands of M with $M_{1}+M_{2}=M$ then $M_{1} \cap M_{2}$ is a direct summand of M. The next lemma shows that conditions $\left(D_{2}\right)$ and $\left(D_{3}\right)$ also hold in pseudo $N Q$ principally projective.

Lemma 3.5. If M is a pseudo $N Q$-principally projective module, then M satisfies $\left(D_{2}\right)$ and $\left(D_{3}\right)$

Proof. $\left(D_{2}\right)$ Let B be a direct summand of M, A a submodule of M and let $\varphi: M / A \rightarrow B$ be an R-isomorphism. Define $\alpha: M \rightarrow B$ by $\alpha(m)=\alpha \eta(m)$ for every $m \in M$ and $\eta: M \rightarrow M / A$ is the natural R-epimorphism. It is clear that α is an R-epimorphism and $\operatorname{Ker}(\alpha)=A$. Since B is a direct summand of M and M is pseudo $N Q$-principally projective, B is pseudo $N M$-principally projective by Lemma 2.2. We have B is a nonessential M-cyclic submodule of M, then there exists an R-homomorphism $\beta: B \rightarrow M$ such that $\alpha \beta=1_{B}$. Then α is a split R-epimorphism. It follows that $M=\operatorname{Ker}(\alpha) \oplus K$ for some a submodule K of M. Then A is a direct summand of M.
$\left(D_{3}\right)$ Let A and B are direct summand of M with $A+B=M$. Write $M=A \oplus A^{\prime}$ where A^{\prime} is a submodule of M. Since $A^{\prime} \simeq(A+B) / A$ and $(A+B) / A \simeq B /(A \cap B), A \cap B$ is a direct summand of M by $\left(D_{2}\right)$

Lemma 3.6. If M is duo pseudo $N Q$-principally projective and $s \in S$ with $M=s(M) \oplus X$, then $X=\operatorname{Ker}(s)$.

Proof. Since M is duo, $s(X) \subset s(M) \cap X=0$, so $X \subset \operatorname{Ker}(s)$. Now we have $M=s(M)+\operatorname{Ker}(s)$ and $M / \operatorname{Ker}(s) \simeq s(M)$. Then $\operatorname{Ker}(s) \subset{ }^{\oplus} M$ by $\left(D_{2}\right)$. It follows that $s(M) \cap \operatorname{Ker}(s) \subset^{\oplus} M$ by $\left(D_{3}\right)$. Write $M=(s(M) \cap \operatorname{Ker}(s)) \oplus$ N. Since M is duo, $s(M)=s(N) \subset s(M) \cap N$ so $s(M) \subset N$. It follows that $s(M) \cap \operatorname{Ker}(s)=0$. Therefore $M=s(M) \oplus \operatorname{Ker}(s)$, and $X=\operatorname{Ker}(s)$.
M is said [8] to have the summand intersection property (SIP) if the intersection of two direct summands is again a direct summand. The module M is said [2] to have the summand sum property (SSP) if the sum of any two summands of M is again a summand.

A right R-module M satisfies $\left(C_{2}\right)$ [3] if, a submodule A of M is isomorphic to a direct summand of M, then A is a direct summand of $M . M$ satisfies $\left(C_{3}\right)$ if, M_{1} and M_{2} are direct summands of M such that $M_{1} \cap M_{2}=0$ then $M_{1} \oplus M_{2}$ is a direct summand of M. It is clear that if, M satisfies $\left(C_{2}\right)$ then it satisfies $\left(C_{3}\right)$.

Proposition 3.7. Let M be a pseudo $N Q$-principally projective module. If M is a quasi-principally injective and $s \in S$ with $s(M) \not \subset e ~ M$, then the following statements are equivalent:
(1) $s(M)$ is a direct summand of M.
(2) $s(M)$ is pseudo NM-principally projective.
(3) $s(M)$ is M-principally injective.

Proof. (1) $\Rightarrow(2)$ is clear.
(2) $\Rightarrow(3)$ Since $s(M) \not \subset^{e} M$ and by (2), there exists an R-homomorphism $\alpha: s(M) \rightarrow M$ such that $s \alpha=1_{s(M)}$ so s splits. Then $M=\operatorname{Ker}(s) \oplus D$ for some submodule D of and $s(M) \simeq D$. Then $s(M)$ is a direct summand of M by $\left(C_{2}\right)$ hence $s(M)$ is M-principally injective.
$(3) \Rightarrow(1)$ Since $s(M)$ is M-principally injective, $\iota \alpha=1_{s(M)}$ for some an R-homomorphism $\alpha: M \rightarrow s(M)$ and $\iota: s(M) \rightarrow M$ is the inclusion map. It follows that $s(M) \subset{ }^{\oplus} M$.

Proposition 3.8. Let M be a duo and pseudo $N Q$-principally projective module. Then
(1) M has the (SIP).
(2) In addition, if M has the property $\left(C_{2}\right)$, then M has the (SSP).

Proof. (1) Write $M=s(M) \oplus K$ and $M=t(M) \oplus L$. Since M is duo,
$s(M)=s(t(M)) \oplus L)=s(t(M))+s(L) \subset(s(M) \cap t(M)) \oplus(s(M) \cap L) \subset s(M)$.
Then $s(M) \cap t(M) \subset^{\oplus} M$.
(2) From (1), we write $M=(s(M) \cap t(M)) \oplus N$. Then
$t(M)=t(M) \cap((s(M) \cap t(M)) \oplus N)=t(M) \cap s(M) \oplus t(M) \cap N$ by the Modular law. Hence $s(M)+t(M)=s(M)+(s(M) \cap t(M) \oplus t(M) \cap N)=s(M) \oplus$ $t(M) \cap N$. Since $M=(s(M) \cap t(M)) \oplus N \subset t(M)+N \subset M, t(M)+N=M$. Then $t(M) \cap N \subset{ }^{\oplus} M$ by $\left(D_{3}\right)$. Therefore $s(M)+t(M) \subset{ }^{\oplus} M$.

Theorem 3.9. Let M be a pseudo $N Q$-principally projective module.
Then S is regular if and only if for each $s \in S$, there exists an idempotent $\alpha \in S$ such that $s(M)=\alpha(M)$.

Proof. (\Rightarrow) Clear.
(\Leftarrow) Let $s \in S$. Then $s(M)=\alpha(M)$ where $\alpha \in S$ is an idempotent. Since $s(M) \subset^{\oplus} M, s S=\alpha S$ by Proposition 3.1. Therefore $s S \subset{ }^{\oplus} S$.

Acknowledgment. The authors would like to thank the referees for their valuable suggestions and comments which helped to improve the quality and readability of the paper.

References

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, 1992.
[2] J. L. Garcia, Properties of direct summands of modules, Comm. Algebra, 17, no. 1, (1989), 73-92.
[3] S. H. Mohamed, B. J. Muller, Continuous and Discrete Modules, 1990.
[4] W. K. Nicholson, M. F. Yousif, Principally Injective Rings, J. Algebra, 174, (1995), 77-93.
[5] W. K. Nicholson, J. K. Park, M. F. Yousif, Principally quasi-injective modules, Comm. Algebra, 27, no. 4, (1999), 1683-1693.
[6] N. V. Sanh, K. P. Shum, S. Dhompongsa, S. Wongwai, On quasiprincipally injective modules, Algebra Coll., 6, no. 3, (1999), 269-276.
[7] H. Tansee, S. Wongwai, A Note on Semi-Projective Modules, Kyungpook Math. J., 42, (2002), 369-380.
[8] G. V. Wilson, Modules with the summand intersection property, Comm. Algebra, 14, (1986), 21-38.
[9] Weimin Xue, Characterization of rings using direct-projective modules and direct-injective modules, 87, (1993), 99-104.

