International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 121–124

On characterizations of $S\Lambda_s$ - T_2 spaces

Montri Thongmoon, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: montri.t@msu.ac.th, chawalit.b@msu.ac.th

(Received May 18, 2023, Accepted July 20, 2023, Published August 31, 2023)

Abstract

Our main purpose is to introduce the concept of $S\Lambda_s$ - T_2 spaces. Moreover, we investigate some characterizations of $S\Lambda_s$ - T_2 spaces.

1 Introduction

Veličko [9] introduced δ -open sets, which are stronger than open sets. Park et al. [5] have offered a new notion called δ -semiopen sets which are stronger than semi-open sets but weaker than δ -open sets and investigated the relationships among several types of these open sets. Caldas et al. [4] investigated some weak separation axioms by utilizing δ -semiopen sets and the δ -semiclosure operator. Caldas et al. [3] investigated the notion of δ - Λ_s -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In [1], the present authors introduced and investigated the concept of (Λ, s) -closed sets by utilizing the notions of Λ_s -sets and semiclosed sets. Pue-on and Boonpok [6] introduced and investigated the notions of $\delta s(\Lambda, s)$ -open sets and $\delta s(\Lambda, s)$ -closed sets. Srisarakham and Boonpok [8] introduced and studied the concept of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces. Buadong et al.

Key words and phrases: $\delta(\Lambda, s)$ -open set, $S\Lambda_s$ - T_2 space. Corresponding author: Montri Thongmoon. AMS (MOS) Subject Classifications: 54A05, 54D10. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net [2] investigated some characterizations of T_1 -GTMS spaces and T_2 -GTMS spaces. In this paper, we introduce the concept of $S\Lambda_s$ - T_2 spaces. Moreover, we discuss several characterizations of $S\Lambda_s$ - T_2 spaces.

2 Preliminaries

A subset A of a topological space (X, τ) is called (Λ, s) -closed [1] if $A = T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) closed set is called (Λ, s) -open. A subset A of a topological space (X, τ) is called $s(\Lambda, s)$ -open [1] if $A \subseteq [A_{(\Lambda,s)}]^{(\Lambda,s)}$. The family of all $s(\Lambda, s)$ -open sets in a topological space (X, τ) is denoted by $s(\Lambda, s)O(X, \tau)$. The complement of a $s(\Lambda, s)$ -open set is called $s(\Lambda, s)$ -closed. Let A be a subset of a topological space (X, τ) . The intersection of all $s(\Lambda, s)$ -closed sets containing A is called the $s(\Lambda, s)$ -closure [7] of A and is denoted by $A^{s(\Lambda, s)}$. A subset A is said to be $s(\Lambda, s)$ -regular [7] if A is $s(\Lambda, s)$ -open and $s(\Lambda, s)$ -closed. The family of all $s(\Lambda, s)$ -regular sets in a topological space (X, τ) is denoted by $s(\Lambda, s)r(X, \tau)$. A point x of X is called a $\delta(\Lambda, s)$ -cluster point [8] of A if $A \cap [U^{(\Lambda, s)}]_{(\Lambda, s)} \neq \emptyset$ for every (Λ, s) -open set U of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [8] of A and is denoted by $A^{\delta(\Lambda, s)}$. A subset A is called $\delta(\Lambda, s)$ -closed [8] if $A = A^{\delta(\Lambda, s)}$. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open. A subset A is called $\delta s(\Lambda, s)$ open [6] if $A \subseteq [A_{(\Lambda,s)}]^{\delta(\Lambda,s)}$. The complement of a $\delta s(\Lambda,s)$ -open set is called $\delta s(\Lambda, s)$ -closed. The family of all $\delta s(\Lambda, s)$ -open sets in a topological space (X,τ) is denoted by $\delta s(\Lambda,s)O(X,\tau)$. A point x of X is called a $\delta s(\Lambda,s)$ cluster point [6] of A if $A \cap U \neq \emptyset$ for every $\delta s(\Lambda, s)$ -open set U of X containing x. The set of all $\delta s(\Lambda, s)$ -cluster points of A is called the $\delta s(\Lambda, s)$ -closure [6] of A and is denoted by $A^{\delta s(\Lambda,s)}$.

3 Characterizations of $S\Lambda_s$ - T_2 spaces

In this section, we introduce the concept of $S\Lambda_s$ - T_2 spaces. Moreover, we discuss some characterizations of $S\Lambda_s$ - T_2 spaces.

Definition 3.1. A topological space (X, τ) is said to be $S\Lambda_s$ - T_2 if, for each pair of distinct points $x, y \in X$, there exist $U, V \in s(\Lambda, s)O(X, \tau)$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Lemma 3.2. [7] For a subset A of a topological space (X, τ) , the following properties hold:

On characterizatons of $S\Lambda_s$ - T_2 spaces

- (1) If A is a $s(\Lambda, s)$ -regular set, then it is $\delta s(\Lambda, s)$ -open.
- (2) If A is a $\delta s(\Lambda, s)$ -open set, then it is $s(\Lambda, s)$ -open.
- (3) If A is a $s(\Lambda, s)$ -open set, then $A^{s(\Lambda, s)}$ is $s(\Lambda, s)$ -regular.

Theorem 3.3. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $S\Lambda_s$ - T_2 ;
- (2) For each pair of distinct points x, y of X, there exist $U, V \in s(\Lambda, s)r(X, \tau)$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.
- (3) For each pair of distinct points x, y of X, there exist $U, V \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U, y \in V$ and $U^{\delta s(\Lambda, s)} \cap V^{\delta s(\Lambda, s)} = \emptyset$.
- (4) For each pair of distinct points x, y of X, there exist $U, V \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U, y \in V$ and $U^{s(\Lambda,s)} \cap V^{s(\Lambda,s)} = \emptyset$.
- (5) For each pair of distinct points x, y of X, there exist $U, V \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Proof. (1) \Rightarrow (2): Suppose that (X, τ) is $S\Lambda_s$ - T_2 . Then, for each pair of distinct points x, y of X, there exist $G, H \in s(\Lambda, s)O(X, \tau)$ such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$. Thus, $G^{s(\Lambda,s)} \cap H = \emptyset$. By Lemma 3.2, we have $G^{s(\Lambda,s)} \in s(\Lambda, s)r(X, \tau)$ and $G^{s(\Lambda,s)} \cap H^{s(\Lambda,s)} = \emptyset$. Now set $U = G^{s(\Lambda,s)}$ and $V = H^{s(\Lambda,s)}$. Then, U and V are $s(\Lambda, s)$ -regular sets such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

(2) \Rightarrow (3): This follows from the facts that $s(\Lambda, s)r(X, \tau) \subseteq \delta s(\Lambda, s)O(X, \tau)$ and $U^{\delta s(\Lambda, s)} = U^{s(\Lambda, s)} = U$ for every $U \in s(\Lambda, s)r(X, \tau)$.

(3) \Rightarrow (4): This follows from the fact that $U^{\delta s(\Lambda,s)} = U^{s(\Lambda,s)}$ for every $U \in \delta s(\Lambda,s)O(X,\tau)$.

 $(4) \Rightarrow (5)$: This is obvious.

(5) \Rightarrow (1): This is obvious since $\delta s(\Lambda, s)O(X, \tau) \subseteq s(\Lambda, s)O(X, \tau)$.

Definition 3.4. A topological space (X, τ) is said to be $S\Lambda_s$ -Urysohn if, for each pair of distinct points x, y of X, there exist $U, V \in s(\Lambda, s)O(X, \tau)$ such that $x \in U, y \in V$ and $U^{(\Lambda,s)} \cap V^{(\Lambda,s)} = \emptyset$.

Theorem 3.5. A topological space (X, τ) is $S\Lambda_s$ -Urysohn if and only if for each pair of distinct points x, y of X, there exist $U, V \in \delta s(\Lambda, s)O(X, \tau)$ such that $x \in U, y \in V$ and $U^{(\Lambda,s)} \cap V^{(\Lambda,s)} = \emptyset$. Proof. Necessity. Suppose that (X, τ) is $S\Lambda_s$ -Urysohn. Then, for each pair of distinct points x, y of X, there exist $U, V \in s(\Lambda, s)O(X, \tau)$ such that $x \in U, y \in V$ and $U^{(\Lambda,s)} \cap V^{(\Lambda,s)} = \emptyset$. Since $U \in s(\Lambda, s)O(X, \tau), U^{(\Lambda,s)} =$ $[U_{(\Lambda,s)}]^{(\Lambda,s)}$ and $U^{(\Lambda,s)}$ is $r(\Lambda, s)$ -closed. Thus, $U^{(\Lambda,s)}, V^{(\Lambda,s)} \in s(\Lambda, s)r(X, \tau) \subseteq$ $\delta s(\Lambda, s)O(X, \tau)$. It is obvious that $x \in U^{(\Lambda,s)}, y \in V^{(\Lambda,s)}$ and

$$[U^{(\Lambda,s)}]^{(\Lambda,s)} \cap [V^{(\Lambda,s)}]^{(\Lambda,s)} = U^{(\Lambda,s)} \cap V^{(\Lambda,s)} = \emptyset.$$

Sufficiency. The proof is obvious since $\delta s(\Lambda, s)O(X, \tau) \subseteq s(\Lambda, s)O(X, \tau)$.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [2] S. Buadong, C. Viriyapong, C. Boonpok, On generalized topology and minimal structure spaces, Int. J. Math. Anal., 5, no. 31, (2011), 1507– 1516.
- [3] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, T. Noiri, δ-semiopen sets in topological spaces, Topology Proc., 29, no. 2, (2005), 369–383.
- [4] M. Caldas, D. N. Georgiou, S. Jafari, T. Noiri, More on δ-semiopen sets, Note di Matematica, 22, no. 2, (2003), 1–14.
- [5] J. H. Park, B. Y. Lee, M. J. Son, On δ-semiopen sets in topological spaces, J. Indian Acad. Math., 19, (1997), 59–67.
- [6] P. Pue-on, C. Boonpok, On δs(Λ, s)-open sets in topological spaces, Int. J. Math. Comput. Sci., 18, no. 4, (2023), 749–753.
- [7] N. Srisarakham, C. Boonpok, Some properties of $S\Lambda_s$ -closed spaces, Int. J. Math. Comput. Sci., **19**, no. 1, (2024), 117–120.
- [8] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 743–747.
- [9] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78, no. 2, (1968), 102–118.