On the Exponential Diophantine equation $5^{x}-3^{y}=z^{2}$

Sutthiwat Thongnak, Theeradach Kaewong, Wariam Chuayjan

Department of Mathematics and Statistics
Faculty of Science
Thaksin University
Phattalung, 93210, Thailand
email: tsutthiwat@tsu.ac.th, theeradachkaewong@gmail.com, cwariam@tsu.ac.th
(Received June 1, 2023, Accepted July 3, 2023, Published August 31, 2023)

Abstract

In this work, we show that $(0,0,0),(1,0,2)$, and $(2,2,4)$ are all the solutions of the exponential Diophantine equation $5^{x}-3^{y}=z^{2}$, where x, y, z are non-negative integers.

1 Introduction

For over two decades, Exponential Diophantine Equations have been widespread problems in Number Theory. In 2004, Mihailescu [4] proved Catalan's conjecture that the exponential Diophantine equation $a^{x}-b^{y}=1$, where a, b, x and y are integers with $\min \{a, b, x, y\}>1$, has only one solution $(a, b, x, y)=$ $(3,2,2,3)$. This settled conjecture has been used in finding integer solutions of many Exponential Diophantine Equations. In 2007, Acu [1] proved that $2^{x}+5^{y}=z^{2}$ has exactly the two solutions $(3,0,3),(2,1,3)$ in nonnegative integers. In (2011), Suvarnamani et al. [6] studied the two equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$. In 2018, Rabago [5] discovered all solutions of the Diophantine Equation $4^{x}-p^{y}=z^{2}$. Moreover, he discovered all solutions of $4^{x}-p^{y}=3 z^{2}$, where p is a prime and $p \equiv 3 \bmod 4$. In

Key words and phrases: Diophantine equation, order of a modulo.
AMS (MOS) Subject Classifications: 11Dxx.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2019, Thongnak et al. [7] studied the equation $2^{x}-3^{y}=z^{2}$ by applying Mihailescu's result to prove that there are three solutions to the equation. In the same year, Burshtein [3] suggested that the Exponential Diophantine Equation $6^{x}-11^{y}=z^{2}$ has no positive integer solutions when $2<x \leq 16$. In 2020, Buosi et al. [2] discovered all positive solutions of the Diophantine Equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+2$ where p is a prime number and $k \geqslant 0$.

Although many of the Exponential Diophantine Equations have been studied, there still remain many unsolved problems. In this work, we find the non-negative integer solutions of the Exponential Diophantine Equation $5^{x}-3^{y}=z^{2}$.

2 Preliminaries

In this part, the basic knowledge of number theory is given to compute and prove all the non-negative integer solutions to the equation.

Definition 2.1. If n is a positive integer and $\operatorname{gcd}(a, n)=1$, the least positive integer k such that $a^{k} \equiv 1 \bmod n$ is called the order of a modulo n and is denoted by $\operatorname{ord}_{n} a$.

Theorem 2.2. Let the integer a have order k modulo n. Then $a^{h} \equiv 1$ $\bmod n$ if and only if $k \mid h$; in particular, $k \mid \phi(n)$.

Theorem 2.3. (Euclid's Lemma) If $a \mid b c$ and $(a, b)=1$, then $a \mid c$.
Lemma 2.4. (Catalan's conjecture) [4] Let a, b, x and y be integers. The Diophantine equation $a^{x}-b^{y}=z^{2}$ with $\min \{a, b, x, y\}>1$ has the unique solution $(a, b, x, y)=(3,2,2,3)$.

Theorem 2.5. If $a|c, b| c$ and $(a, b)=1$, then $a b \mid c$.

3 Main results

Theorem 3.1. Let x, y, and z be non-negative integers. The Diophantine equation $5^{x}-3^{y}=z^{2}$ has the three solutions, $(x, y, z)=(0,0,0),(1,0,2)$, and $(2,2,4)$.

Proof. Let x, y, and z be non-negative integers such that

$$
\begin{equation*}
5^{x}-3^{y}=z^{2} . \tag{3.1}
\end{equation*}
$$

We begin the proof by considering the following four cases:
Case 1: $x=0, y=0$. From (3.1), we obtain $z^{2}=0$ or $z=0$. Hence $(x, y, z)=(0,0,0)$ is a solution.
Case 2: $x=0, y>0$. From (3.1), we have $z^{2}=1-3^{y}<0$, which is impossible.
Case 3: $x>0, y=0$. (3.1) becomes

$$
\begin{equation*}
5^{x}-z^{2}=1 \tag{3.2}
\end{equation*}
$$

If $x=1$, then $z^{2}=4$ or $z=2$. Thus $(x, y, z)=(1,0,2)$ is a solution.
If $x>1$, then 3.2 yields $z>1$. By Lemma 2.4 (Catalan's conjecture), we can see that (3.2) has no solution for $x>1$.
Case 4: $x>0, y>0$. Equation (3.1) implies that $z^{2} \equiv(-1)^{x} \bmod 3$ but z^{2} is not equivalent to $-1 \bmod 3$. Thus x must be even. Let $x=2 k$, $\exists k \in \mathbb{Z}^{+}$. From (3.1), we obtain $3^{y}=5^{2 k}-z^{2}=\left(5^{k}-z\right)\left(5^{k}+z\right)$. There exists $\alpha \in \mathbb{Z}^{+} \cup\{0\}$ such that $5^{k}-z=3^{\alpha}$ and $5^{k}+z=3^{y-\alpha}$, where $\alpha<y-\alpha$. We have $2 \cdot 5^{k}=3^{y-\alpha}+3^{\alpha}=3^{\alpha}\left(3^{y-2 \alpha}+1\right)$. Since $3 \nmid 2 \cdot 5^{k}, \alpha=0$ and

$$
\begin{equation*}
2 \cdot 5^{k}=3^{y}+1 \tag{3.3}
\end{equation*}
$$

We consider y as follows:
If $y=1$, then (3.3) becomes $2 \cdot 5^{k}=4$. Thus $5^{k}=2$, which is impossible. If $y=2$, then (3.3) becomes $2 \cdot 5^{k}=10$. We obtain $k=1$ and so $x=2$ and $z=4$. Hence the solution of (3.1) is $(2,2,4)$.
If $y>2$, then (3.3) becomes $k>1$ and $2 \cdot 5^{k}-10=3^{y}-9$ or $10\left(5^{k-1}-1\right)=$ $9\left(3^{y-2}-1\right)$. Let $m=k-1>0$ and $n=y-2>0$. We obtain

$$
\begin{equation*}
10\left(5^{m}-1\right)=9\left(3^{n}-1\right) \tag{3.4}
\end{equation*}
$$

From (3.4), $5 \mid 9\left(3^{n}-1\right)$. Since $\operatorname{gcd}(5,9)=1$, we also obtain $3^{n} \equiv 1 \bmod 5$. Since $\operatorname{ord}_{5} 3=4,4 \mid n$. Again by (3.4), we find that $9 \mid 10\left(5^{m}-1\right)$. This means that $9 \mid 5^{m}-1$ or $5^{m} \equiv 1 \bmod 9$ because $\operatorname{gcd}(9,10)=1$. Since $\operatorname{ord}_{9} 5=6$, $5^{m} \equiv 1 \bmod 9$ implies that $6 \mid m$. That is, $m=6 t, \exists t \in \mathbb{Z}^{+}$. By considering (3.4), since $5^{6 t} \equiv 1 \bmod 31$, we then obtain $31 \mid 9\left(3^{n}-1\right)$. With $\operatorname{gcd}(9,31)=$ 1 , this implies that $31 \mid 3^{n}-1$ or $3^{n} \equiv 1 \bmod 31$. Since $\operatorname{ord}_{31} 3=30$, we obtain $30 \mid n$ which implies that $5 \mid n$. Now, $4 \mid n$ and $5 \mid n$ with $\operatorname{gcd}(4,5)=1$. So $20 \mid n$. Assume $n=20 l, \exists l \in \mathbb{Z}^{+}$. We have $3^{n}=3^{20 l} \equiv 1 \bmod 25$ or $25 \mid 3^{n}-1$. Again by (3.4), we obtain $25 \mid 10\left(5^{m}-1\right)$ or $5 \mid 2\left(5^{m}-1\right)$. Since $\operatorname{gcd}(2,5)=1$, we can write $5 \mid 5^{m}-1$, which is impossible. The proof is now complete.

4 Conclusion

In this work, we have found all the non-negative integer solutions of the exponential Diophantine Equation $5^{x}-3^{y}=z^{2}$ using four cases based on the x and y values. The non-negative integer solution set is $\{(0,0,0),(1,0,2),(2,2,4)\}$.

Acknowledgment. We would like to thank the reviewers for their careful reading of our paper and their useful comments.

References

[1] D. Acu, On the Diophantine Equation $2^{x}+5^{y}=z^{2}$, General Math., 15, (2007), 145-148.
[2] M. Buosi, A. Lemos, A.L.P. Porto, D.F.G. Santiago, On the exponential Diophantine equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+2$ a prime number, Southeast-Asian Journal of Sciences, 8, no. 2, (2020) 103-109.
[3] N. Burshtein, A Short Note on Solutions of the Diophantine Equation $6^{x}+11^{y}=z^{2}$ and $6^{x}-11^{y}=z^{2}$ in Positive Integers x, y, z, Annals of Pure and Applied Mathematics, 19, no. 2, (2019), 55-56.
[4] P. Mihailescu, Primary Cyclotomic Units and a Proof of Catalan's Conjecture, Journal für die Reine und Angewandte Mathematik, 572, (2004), 167-195.
[5] J.F.T Rabago, On the Diophantine equation $4^{x}-p^{y}=3 z^{2}$ where p is a prime, Thai Journal of Mathematics, 16, no. 3, (2018), 643-650.
[6] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal, 1, no. 1, (2011), 25-28.
[7] S. Thongnak, W. Chuayjan, T. Kaewong, On the exponential Diophantine equation $2^{x}-3^{y}=z^{2}$, Southeast-Asian Journal of Sciences, 7, no. 1, (2019), 1-4.

