International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 99–102

On the Exponential Diophantine equation $5^x - 3^y = z^2$

Sutthiwat Thongnak, Theeradach Kaewong, Wariam Chuayjan

Department of Mathematics and Statistics Faculty of Science Thaksin University Phattalung, 93210, Thailand

email: tsutthiwat@tsu.ac.th, theeradachkaewong@gmail.com, cwariam@tsu.ac.th

(Received June 1, 2023, Accepted July 3, 2023, Published August 31, 2023)

Abstract

In this work, we show that (0, 0, 0), (1, 0, 2), and (2, 2, 4) are all the solutions of the exponential Diophantine equation $5^x - 3^y = z^2$, where x, y, z are non-negative integers.

1 Introduction

For over two decades, Exponential Diophantine Equations have been widespread problems in Number Theory. In 2004, Mihailescu [4] proved Catalan's conjecture that the exponential Diophantine equation $a^x - b^y = 1$, where a, b, x and y are integers with min $\{a, b, x, y\} > 1$, has only one solution (a, b, x, y) =(3, 2, 2, 3). This settled conjecture has been used in finding integer solutions of many Exponential Diophantine Equations. In 2007, Acu [1] proved that $2^x + 5^y = z^2$ has exactly the two solutions (3, 0, 3), (2, 1, 3) in nonnegative integers. In (2011), Suvarnamani et al. [6] studied the two equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$. In 2018, Rabago [5] discovered all solutions of the Diophantine Equation $4^x - p^y = z^2$. Moreover, he discovered all solutions of $4^x - p^y = 3z^2$, where p is a prime and $p \equiv 3 \mod 4$. In

Key words and phrases: Diophantine equation, order of a modulo. AMS (MOS) Subject Classifications: 11Dxx. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net 2019, Thongnak et al. [7] studied the equation $2^x - 3^y = z^2$ by applying Mihailescu's result to prove that there are three solutions to the equation. In the same year, Burshtein [3] suggested that the Exponential Diophantine Equation $6^x - 11^y = z^2$ has no positive integer solutions when $2 < x \le 16$. In 2020, Buosi et al. [2] discovered all positive solutions of the Diophantine Equation $p^x - 2^y = z^2$ with $p = k^2 + 2$ where p is a prime number and $k \ge 0$.

Although many of the Exponential Diophantine Equations have been studied, there still remain many unsolved problems. In this work, we find the non-negative integer solutions of the Exponential Diophantine Equation $5^x - 3^y = z^2$.

2 Preliminaries

In this part, the basic knowledge of number theory is given to compute and prove all the non-negative integer solutions to the equation.

Definition 2.1. If n is a positive integer and gcd (a, n) = 1, the least positive integer k such that $a^k \equiv 1 \mod n$ is called the order of a modulo n and is denoted by $\operatorname{ord}_n a$.

Theorem 2.2. Let the integer a have order k modulo n. Then $a^h \equiv 1 \mod n$ if and only if k|h; in particular, $k|\phi(n)$.

Theorem 2.3. (Euclid's Lemma) If a|bc and (a,b) = 1, then a|c.

Lemma 2.4. (Catalan's conjecture) [4] Let a, b, x and y be integers. The Diophantine equation $a^x - b^y = z^2$ with $\min\{a, b, x, y\} > 1$ has the unique solution (a, b, x, y) = (3, 2, 2, 3).

Theorem 2.5. If a|c, b|c and (a, b) = 1, then ab|c.

3 Main results

Theorem 3.1. Let x, y, and z be non-negative integers. The Diophantine equation $5^x - 3^y = z^2$ has the three solutions, (x, y, z) = (0, 0, 0), (1, 0, 2), and (2, 2, 4).

Proof. Let x, y, and z be non-negative integers such that

$$5^x - 3^y = z^2. (3.1)$$

We begin the proof by considering the following four cases:

Case 1: x = 0, y = 0. From (3.1), we obtain $z^2 = 0$ or z = 0. Hence (x, y, z) = (0, 0, 0) is a solution.

Case 2: x = 0, y > 0. From (3.1), we have $z^2 = 1 - 3^y < 0$, which is impossible.

Case 3: x > 0, y = 0. (3.1) becomes

$$5^x - z^2 = 1. (3.2)$$

If x = 1, then $z^2 = 4$ or z = 2. Thus (x, y, z) = (1, 0, 2) is a solution.

If x > 1, then 3.2 yields z > 1. By Lemma 2.4 (Catalan's conjecture), we can see that (3.2) has no solution for x > 1.

Case 4: x > 0, y > 0. Equation (3.1) implies that $z^2 \equiv (-1)^x \mod 3$ but z^2 is not equivalent to $-1 \mod 3$. Thus x must be even. Let x = 2k, $\exists k \in \mathbb{Z}^+$. From (3.1), we obtain $3^y = 5^{2k} - z^2 = (5^k - z)(5^k + z)$. There exists $\alpha \in \mathbb{Z}^+ \cup \{0\}$ such that $5^k - z = 3^\alpha$ and $5^k + z = 3^{y-\alpha}$, where $\alpha < y - \alpha$. We have $2 \cdot 5^k = 3^{y-\alpha} + 3^\alpha = 3^\alpha (3^{y-2\alpha} + 1)$. Since $3 \nmid 2 \cdot 5^k$, $\alpha = 0$ and

$$2 \cdot 5^k = 3^y + 1. \tag{3.3}$$

We consider y as follows:

If y = 1, then (3.3) becomes $2 \cdot 5^k = 4$. Thus $5^k = 2$, which is impossible. If y = 2, then (3.3) becomes $2 \cdot 5^k = 10$. We obtain k = 1 and so x = 2 and z = 4. Hence the solution of (3.1) is (2, 2, 4). If y > 2, then (3.3) becomes k > 1 and $2 \cdot 5^k - 10 = 3^y - 9$ or $10(5^{k-1} - 1) = 3^{k-1}$

If y > 2, then (3.3) becomes k > 1 and $2 \cdot 5^k - 10 = 3^y - 9$ or $10(5^{k-1} - 1) = 9(3^{y-2} - 1)$. Let m = k - 1 > 0 and n = y - 2 > 0. We obtain

$$10(5^m - 1) = 9(3^n - 1). (3.4)$$

From (3.4), $5|9(3^n - 1)$. Since gcd(5, 9) = 1, we also obtain $3^n \equiv 1 \mod 5$. Since $ord_53 = 4$, 4|n. Again by (3.4), we find that $9|10(5^m - 1)$. This means that $9|5^m - 1$ or $5^m \equiv 1 \mod 9$ because gcd(9, 10) = 1. Since $ord_95 = 6$, $5^m \equiv 1 \mod 9$ implies that 6|m. That is, m = 6t, $\exists t \in \mathbb{Z}^+$. By considering (3.4), since $5^{6t} \equiv 1 \mod 31$, we then obtain $31|9(3^n - 1)$. With gcd(9, 31) = 1, this implies that $31|3^n - 1$ or $3^n \equiv 1 \mod 31$. Since $ord_{31}3 = 30$, we obtain 30|n which implies that 5|n. Now, 4|n and 5|n with gcd(4, 5) = 1. So 20|n. Assume n = 20l, $\exists l \in \mathbb{Z}^+$. We have $3^n = 3^{20l} \equiv 1 \mod 25$ or $25|3^n - 1$. Again by (3.4), we obtain $25|10(5^m - 1)$ or $5|2(5^m - 1)$. Since gcd(2, 5) = 1, we can write $5|5^m - 1$, which is impossible. The proof is now complete.

4 Conclusion

In this work, we have found all the non-negative integer solutions of the exponential Diophantine Equation $5^x - 3^y = z^2$ using four cases based on the x and y values. The non-negative integer solution set is $\{(0,0,0), (1,0,2), (2,2,4)\}$.

Acknowledgment. We would like to thank the reviewers for their careful reading of our paper and their useful comments.

References

- [1] D. Acu, On the Diophantine Equation $2^x + 5^y = z^2$, General Math., 15, (2007), 145–148.
- [2] M. Buosi, A. Lemos, A.L.P. Porto, D.F.G. Santiago, On the exponential Diophantine equation $p^x 2^y = z^2$ with $p = k^2 + 2$ a prime number, Southeast-Asian Journal of Sciences, **8**, no. 2, (2020) 103–109.
- [3] N. Burshtein, A Short Note on Solutions of the Diophantine Equation $6^x + 11^y = z^2$ and $6^x 11^y = z^2$ in Positive Integers x, y, z, Annals of Pure and Applied Mathematics, **19**, no. 2, (2019), 55–56.
- [4] P. Mihailescu, Primary Cyclotomic Units and a Proof of Catalan's Conjecture, Journal für die Reine und Angewandte Mathematik, 572, (2004), 167–195.
- [5] J.F.T Rabago, On the Diophantine equation $4^x p^y = 3z^2$ where p is a prime, Thai Journal of Mathematics, **16**, no. 3, (2018), 643–650.
- [6] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Science and Technology RMUTT Journal, **1**, no. 1, (2011), 25–28.
- [7] S. Thongnak, W. Chuayjan, T. Kaewong, On the exponential Diophantine equation $2^x - 3^y = z^2$, Southeast-Asian Journal of Sciences, 7, no. 1, (2019), 1–4.