# Some characterizations of regular duo $\Gamma$-semigroups 

Warud Nakkhasen, Atikan Thongot, Tanyalak Sangsriho<br>Department of Mathematics<br>Faculty of Science<br>Mahasarakham University<br>Maha Sarakham 44150, Thailand<br>email: warud.n@msu.ac.th

(Received July 6, 2023, Accepted August 9, 2023, Published August 31, 2023)


#### Abstract

It is well known that a $\Gamma$-semigroup as a generalization of a semigroup. In this article, we present some characterizations of the regularity of duo $\Gamma$-semigroups by the properties of left $\Gamma$-ideals, right $\Gamma$-ideals, quasi- $\Gamma$-ideals and bi- $\Gamma$-ideals of $\Gamma$-semigroups.


## 1 Introduction

In 1971, Lajos [9] examined the characterizations of regular duo semigroups. The notion of $\Gamma$-semigroups, a generalization of semigroups, was introduced by Sen [13]. The study of regularity of $\Gamma$-semigroups has been investigated continuously, for example, in regular $\Gamma$-semigroups $[1,14]$, in completely regular $\Gamma$-semigroups [10, 15], in weakly regular $\Gamma$-semigroups [8]. In 2008, Hila [5] characterized regular duo $\Gamma$-semigroups. Moreover, the characterizations of regularities in duo $\Gamma$-semigroups were considered by Rao at el. [11] in 2012. Furthermore, Kehayopulu [6] studied the class of regular duo po-Гsemigroups, and then, in 2021, Luangchaisri and Changphas [7] characterized completely regular 2 -duo semigroups by means of ( 2,0 )-ideals, ( 0,2 )-ideals,

Key words and phrases: $\Gamma$-semigroup, duo $\Gamma$-semigroup, regular duo $\Gamma$-semigroup.
AMS (MOS) Subject Classifications: 20M17, 20M75.
The Corresponding author is Warud Nakkhasen.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
$(2,2)$-ideals and (2,2)-quasi-ideals of semigroups. In this paper, we give some characterizations of regular duo $\Gamma$-semigroups using left $\Gamma$-ideals, right $\Gamma$-ideals, quasi- $\Gamma$-ideals and bi- $\Gamma$-ideals of $\Gamma$-semigroups.

## 2 Preliminaries

Let $S$ and $\Gamma$ be nonempty sets. Then $S$ is called a $\Gamma$-semigroup [13] if there exists a mapping $S \times \Gamma \times S \rightarrow S$ (the image of $(x, \alpha, y)$ written as $x \alpha y$, for all $x, y \in S$ and $\alpha \in \Gamma$ ) satisfying $(x \alpha y) \beta z=x \alpha(y \beta z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$. For any nonempty subsets $A$ and $B$ of a $\Gamma$-semigroup $S$, the product of $A$ and $B$ is defined as follows:

$$
A \Gamma B=\{a \alpha b \mid a \in A, b \in B, \alpha \in \Gamma\}
$$

For every subset $\{a\}$ of $S$, we write $A \Gamma a$ for $A \Gamma\{a\}$ and $a \Gamma A$ for $\{a\} \Gamma A$. In addition, the set $A \Gamma A$ denoted by $A^{2}$.

The following concepts are contained in $[2,3,4]$. Let $S$ be a $\Gamma$-semigroup and $A$ be a nonempty subsets of $S$. Then:
(i) $A$ is called a $\Gamma$-subsemigroup of $S$ if $A^{2} \subseteq A$;
(ii) $A$ is called a left (resp., right) $\Gamma$-ideal of $S$ if $S \Gamma A \subseteq A$ (resp., $A \Gamma S \subseteq A$ );
(iii) $A$ is called a two-sided $\Gamma$-ideal of $S$ if it is both a left and a right $\Gamma$-ideal of $S$;
(iv) $A$ is known to be a quasi- $\Gamma$-ideal of $S$ if $S \Gamma A \cap A \Gamma S \subseteq A$;
(v) $A$ is said to be a bi- $\Gamma$-ideal of $S$ if $A^{2} \subseteq A$ and $A \Gamma S \Gamma A \subseteq A$. For a $\Gamma$-semigroup $S$, we obtain that every left (resp., right) $\Gamma$-ideal of $S$ is also a quasi- $\Gamma$-ideal of $S$, while every quasi- $\Gamma$-ideal of $S$ is also a bi- $\Gamma$-ideal of $S$.

Let $S$ be a $\Gamma$-semigroup and $A$ be a nonempty subset of $S$. The left (resp., right) $\Gamma$-ideal of $S$ generated by $A[12]$ is defined as the form

$$
\left.(A)_{l}=A \cup S \Gamma A \text { (resp., }(A)_{r}=A \cup A \Gamma S\right)
$$

If $A=\{a\}$, then we denote $(\{a\})_{l}=(a)_{l}$ and $(\{a\})_{r}=(a)_{r}$. A $\Gamma$-semigroup $S$ is called duo (see, [5]) if for every one-sided $\Gamma$-ideal of $S$ is a two-sided $\Gamma$-ideal of $S$. We observe that if $A$ is any nonempty subset of a duo $\Gamma$-semigroup $S$, then $(A)_{l}=(A)_{r}$.

## 3 Regular duo $\Gamma$-semigroups

In this section, we will present the results concerning the characterizations of regular duo $\Gamma$-semigroups using the concepts of different types of their $\Gamma$-ideals.

Let $S$ be a $\Gamma$-semigroup. Then the element $a$ of $S$ is called regular (cf. [5, 15]) if there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a=a \alpha x \beta a$. The $\Gamma$-semigroup $S$ is said to be regular if for every element of $S$ is regular. Equivalent Definitions:
(i) $a \in a \Gamma S \Gamma a$ for all $a \in S$;
(ii) $A \subseteq A \Gamma S \Gamma A$ for all nonempty subset $A$ of $S$.

Theorem 3.1. Let $S$ be a $\Gamma$-semigroup. Then $S$ is a regular duo $\Gamma$-semigroup if and only if the following conditions hold:
(i) $(L \cup L \Gamma S)^{2}=L$, for every left $\Gamma$-ideal $L$ of $S$;
(ii) $(R \cup S \Gamma R)^{2}=R$, for every right $\Gamma$-ideal $R$ of $S$.

Proof. Assume that $S$ is a regular duo $\Gamma$-semigroup. Let $L$ be a left $\Gamma$-ideal of $S$. Then $L \subseteq L \Gamma(S \Gamma L) \subseteq L \Gamma L \subseteq S \Gamma L \subseteq L$. So, $L=L \Gamma L$. By assumption, $L$ is also a right $\Gamma$-ideal of $S$. It follows that

$$
\begin{aligned}
L & =L \Gamma L=(L \Gamma L) \Gamma(L \Gamma L)=(L \Gamma L)^{2}=(L \Gamma L \cup L \Gamma L)^{2} \\
& \subseteq(L \cup L \Gamma S)^{2} \subseteq(L \cup L)^{2}=L \Gamma L=L
\end{aligned}
$$

This means that $(L \cup L \Gamma S)^{2}=L$. In the other case, we can proved similarly.
Conversely, let $L$ be a left $\Gamma$-ideal of $S$. By assumption, we have

$$
\begin{aligned}
L \Gamma S & =(L \cup L \Gamma S)^{2} \Gamma S \subseteq(L \cup L \Gamma S) \Gamma(L \Gamma S \cup L \Gamma S) \\
& =(L \cup L \Gamma S) \Gamma(L \Gamma S) \subseteq(L \cup L \Gamma S) \Gamma(L \cup L \Gamma S) \\
& =(L \cup L \Gamma S)^{2}=L
\end{aligned}
$$

Hence, $L$ is a right $\Gamma$-ideal of $S$. In the same way, if $R$ is a right $\Gamma$-ideal of $S$, then using (ii) we have that $R$ is also a left $\Gamma$-ideal of $S$. Thus, $S$ is duo. Next, we want to show that $S$ is regular. Let $a \in S$. Then,

$$
\begin{aligned}
a \in(a)_{r} & =\left((a)_{r} \cup(a)_{r} \Gamma S\right)^{2} \subseteq\left((a)_{r} \cup(a)_{r}\right)^{2} \\
& =(a)_{r} \Gamma(a)_{r}=(a)_{r} \Gamma(a)_{l} \\
& =(a \cup a \Gamma S) \Gamma(a \cup S \Gamma a) \\
& \subseteq a \Gamma a \cup a \Gamma S \Gamma a .
\end{aligned}
$$

Consequently, $S$ is regular.
Theorem 3.2. Let $S$ be a $\Gamma$-semigroup. Then $S$ is a regular duo $\Gamma$-semigroup if and only if $(B \cup S \Gamma B)^{2}=B=(B \cup B \Gamma S)^{2}$, for each bi-Г-ideal $B$ of $S$.

Proof. Let $B$ be any bi- $\Gamma$-ideal $B$ of $S$. Now, consider

$$
\begin{aligned}
(B \cup B \Gamma S)^{2} & \subseteq B \Gamma B \cup B \Gamma B \Gamma S \cup B \Gamma S \Gamma B \cup B \Gamma S \Gamma B \Gamma S \\
& \subseteq B \Gamma S \subseteq(B \Gamma S \Gamma B) \Gamma S \\
& \subseteq B \Gamma S \Gamma(B \Gamma S \Gamma B) \Gamma S .
\end{aligned}
$$

It is easy to see that $S \Gamma B$ is a left $\Gamma$-ideal of $S$. By the hypothesis, we obtain that $S \Gamma B$ is also a right $\Gamma$-ideal of $S$. Thus

$$
B \Gamma S \Gamma B \Gamma S \Gamma B \Gamma S=(B \Gamma S \Gamma B) \Gamma((S \Gamma B) \Gamma S) \subseteq B \Gamma S \Gamma B \subseteq B
$$

Hence $(B \cup B \Gamma S)^{2} \subseteq B$. On the other hand,

$$
B \subseteq(B)_{r} \subseteq(B)_{r} \Gamma S \Gamma(B)_{r} \subseteq(B)_{r} \Gamma(B)_{r}=(B \cup B \Gamma S)^{2}
$$

Therefore, $B=(B \cup B \Gamma S)^{2}$. Similarly, we can show that $B=(B \cup S \Gamma B)^{2}$. This shows that $(B \cup S \Gamma B)^{2}=B=(B \cup B \Gamma S)^{2}$.

Conversely, let $L$ be a left $\Gamma$-ideal of $S$. Also, $L$ is a bi- $\Gamma$-ideal of $S$. By the assumption, $L=(L \cup L \Gamma S)^{2}$. At the same time, for any right $\Gamma$-ideal $R$ of $S, R=(R \cup S \Gamma R)^{2}$. By Theorem 3.1, we conclude that $S$ is a regular duo $\Gamma$-semigroup.

Theorem 3.3. Let $S$ be a $\Gamma$-semigroup. Then $S$ is a regular duo $\Gamma$-semigroup if and only if $(Q \cup Q \Gamma S)^{2}=Q=(Q \cup S \Gamma Q)^{2}$, for any quasi- $\Gamma$-ideal $Q$ of $S$.

Proof. Assume that $S$ is a regular duo $\Gamma$-semigroup. Let $Q$ be a quasi- $\Gamma$-ideal of $S$. Then $(Q \cup Q \Gamma S)^{2} \subseteq Q \Gamma Q \cup Q \Gamma Q \Gamma S \cup Q \Gamma S \Gamma Q \cup Q \Gamma S \Gamma Q \Gamma S \subseteq Q \Gamma S$. Since $S$ is duo and $S \Gamma Q$ is a left $\Gamma$-ideal of $S$, it follows that

$$
\begin{aligned}
(Q \cup Q \Gamma S)^{2} & \subseteq Q \Gamma Q \cup Q \Gamma Q \Gamma S \cup Q \Gamma S \Gamma Q \cup Q \Gamma S \Gamma Q \Gamma S \\
& \subseteq S \Gamma Q \cup(S \Gamma Q) \Gamma S \\
& \subseteq S \Gamma Q \cup S \Gamma Q=S \Gamma Q
\end{aligned}
$$

This implies that $(Q \cup Q \Gamma S)^{2} \subseteq Q \Gamma S \cap S \Gamma Q \subseteq Q$. As shown in the proof of Theorem 3.2, $Q \subseteq(Q \cup Q \Gamma S)^{2}$. Hence, $(Q \cup Q \Gamma S)^{2}=Q$. Similarly, we can prove that $(Q \cup S \Gamma Q)^{2}=Q$. Therefore, $(Q \cup Q \Gamma S)^{2}=Q=(Q \cup S \Gamma Q)^{2}$.

Conversely, let $L$ and $R$ be any left $\Gamma$-ideal and right $\Gamma$-ideal of $S$, respectively. Then, $L$ and $R$ are quasi- $\Gamma$-ideals of $S$. By using the hypothesis, we have that $L=(L \cup L \Gamma S)^{2}$ and $R=(R \cup S \Gamma R)^{2}$. By Theorem 3.1, it turns out that $S$ is a regular duo $\Gamma$-semigroup.

Acknowledgment. This research project was financially supported by Mahasarakham University.

## References

[1] S. Chattopadhyay, On right inverse $\Gamma$-semigroup, Konuralp Journal of Mathematics, 3, no. 2, (2015), 140-151.
[2] R. Chinram, On quasi-gamma-ideals in gamma-semigroups, ScienceAsia, 32, (2006), 351-353.
[3] R. Chinram, C. Jirojkul, On bi-Г-ideals in $\Gamma$-semigroups, Songklanakarin J. Sci. Tech., 29, no, 1, (2007), 231-234.
[4] T. K. Dutta, N. C. Adhikari, On $\Gamma$-semigroup with right and left unities, Soochow Journal of Mathematics, 19, no. 4, (1993), 461-474.
[5] K. Hila, On regular, semiprime and quasi-reflexive $\Gamma$-semigroup amd minimal quasi-ideals, Lobachevskii Journal of Mathematics, 29, no. 3, (2008), 141-152.
[6] N. Kehayopulu, On regular duo po- $\Gamma$-semigroups, Mathematica Slovaca, 61, no. 6, (2011), 871-884.
[7] P. Luangchaisri, T. Changphas, On completely regular 2-duo semigroups, Quasigroups and Related Systems, 29, (2021), 89-96.
[8] A. Mahboob, N. M. Khan, Pure $\Gamma$-ideals in $\Gamma$-semigroups, Afrika Mathematika, 32, (2021), 1201-1210.
[9] S. Lajos, A new characterizations of regular duo semigroups, Proc. Japan Acad., 47, (1971), 394-395.
[10] E. Pasku, The adjoint semigroup of a $\Gamma$-semigroup, Novi Sad J. Math., 47, no. 2, (2017), 31-39.
[11] D. M. Rao, A. Anjaneyulu, A. G. Rao, Primary and semiprimary Гideals in $\Gamma$-semigroups, International Journal of Mathematical Sciences, Technology and Humanities, 29, (2012), 282-293.
[12] N. K. Saha, On $\Gamma$-semigroups, Bull. Cal. Math. Soc., 79, (1987), 331335.
[13] M. K. Sen, On $\Gamma$-semigroups, Algebra and its Applications, Lecture Notes in Pure and Applied Mathematics, 91, Decker, New York 1984, 301-308.
[14] A. Seth, $\Gamma$-group congruences on regular $\Gamma$-semigroups, Int. J. Math. \& Math. Sci., 15, no. 1, (1992), 103-106.
[15] T. Xhillari, I. Braja, Completely regular $\Gamma$-semigroups, International Journal of Algebra, 4, no. 20, (2010), 995-1002.

