International Journal of Mathematics and Computer Science, **19**(2024), no. 1, 185–190

(M CS)

Some characterizations of regular duo Γ -semigroups

Warud Nakkhasen, Atikan Thongot, Tanyalak Sangsriho

Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham 44150, Thailand

email: warud.n@msu.ac.th

(Received July 6, 2023, Accepted August 9, 2023, Published August 31, 2023)

Abstract

It is well known that a Γ -semigroup as a generalization of a semigroup. In this article, we present some characterizations of the regularity of duo Γ -semigroups by the properties of left Γ -ideals, right Γ -ideals, quasi- Γ -ideals and bi- Γ -ideals of Γ -semigroups.

1 Introduction

In 1971, Lajos [9] examined the characterizations of regular duo semigroups. The notion of Γ -semigroups, a generalization of semigroups, was introduced by Sen [13]. The study of regularity of Γ -semigroups has been investigated continuously, for example, in regular Γ -semigroups [1, 14], in completely regular Γ -semigroups [10, 15], in weakly regular Γ -semigroups [8]. In 2008, Hila [5] characterized regular duo Γ -semigroups. Moreover, the characterizations of regularities in duo Γ -semigroups were considered by Rao at el. [11] in 2012. Furthermore, Kehayopulu [6] studied the class of regular duo po- Γ -semigroups, and then, in 2021, Luangchaisri and Changphas [7] characterized completely regular 2-duo semigroups by means of (2, 0)-ideals, (0, 2)-ideals,

Key words and phrases: Γ -semigroup, duo Γ -semigroup, regular duo Γ -semigroup.

AMS (MOS) Subject Classifications: 20M17, 20M75. The Corresponding author is Warud Nakkhasen. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net (2, 2)-ideals and (2, 2)-quasi-ideals of semigroups. In this paper, we give some characterizations of regular duo Γ -semigroups using left Γ -ideals, right Γ -ideals, quasi- Γ -ideals and bi- Γ -ideals of Γ -semigroups.

2 Preliminaries

Let S and Γ be nonempty sets. Then S is called a Γ -semigroup [13] if there exists a mapping $S \times \Gamma \times S \to S$ (the image of (x, α, y) written as $x\alpha y$, for all $x, y \in S$ and $\alpha \in \Gamma$) satisfying $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$. For any nonempty subsets A and B of a Γ -semigroup S, the product of A and B is defined as follows:

$$A\Gamma B = \{a\alpha b \mid a \in A, b \in B, \alpha \in \Gamma\}.$$

For every subset $\{a\}$ of S, we write $A\Gamma a$ for $A\Gamma \{a\}$ and $a\Gamma A$ for $\{a\}\Gamma A$. In addition, the set $A\Gamma A$ denoted by A^2 .

The following concepts are contained in [2, 3, 4]. Let S be a Γ -semigroup and A be a nonempty subsets of S. Then:

(i) A is called a Γ -subsemigroup of S if $A^2 \subseteq A$;

(ii) A is called a *left* (resp., *right*) Γ -*ideal* of S if $S\Gamma A \subseteq A$ (resp., $A\Gamma S \subseteq A$); (iii) A is called a *two-sided* Γ -*ideal* of S if it is both a left and a right Γ -ideal of S;

(iv) A is known to be a quasi- Γ -ideal of S if $S\Gamma A \cap A\Gamma S \subseteq A$;

(v) A is said to be a bi- Γ -*ideal* of S if $A^2 \subseteq A$ and $A\Gamma S\Gamma A \subseteq A$. For a Γ -semigroup S, we obtain that every left (resp., right) Γ -ideal of S is also a quasi- Γ -ideal of S, while every quasi- Γ -ideal of S is also a bi- Γ -ideal of S.

Let S be a Γ -semigroup and A be a nonempty subset of S. The *left* (resp., *right*) Γ -*ideal of S generated by A* [12] is defined as the form

$$(A)_l = A \cup S\Gamma A \text{ (resp., } (A)_r = A \cup A\Gamma S).$$

If $A = \{a\}$, then we denote $(\{a\})_l = (a)_l$ and $(\{a\})_r = (a)_r$. A Γ -semigroup S is called *duo* (see, [5]) if for every one-sided Γ -ideal of S is a two-sided Γ -ideal of S. We observe that if A is any nonempty subset of a duo Γ -semigroup S, then $(A)_l = (A)_r$.

3 Regular duo Γ-semigroups

In this section, we will present the results concerning the characterizations of regular duo Γ -semigroups using the concepts of different types of their Γ -ideals.

Some characterizations of regular duo Γ -semigroups

Let S be a Γ -semigroup. Then the element a of S is called *regular* (cf. [5, 15]) if there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha x\beta a$. The Γ -semigroup S is said to be *regular* if for every element of S is regular. Equivalent Definitions:

(i) $a \in a\Gamma S\Gamma a$ for all $a \in S$;

(ii) $A \subseteq A \Gamma S \Gamma A$ for all nonempty subset A of S.

Theorem 3.1. Let S be a Γ -semigroup. Then S is a regular duo Γ -semigroup if and only if the following conditions hold:

(i)
$$(L \cup L\Gamma S)^2 = L$$
, for every left Γ -ideal L of S;

(ii) $(R \cup S\Gamma R)^2 = R$, for every right Γ -ideal R of S.

Proof. Assume that S is a regular duo Γ -semigroup. Let L be a left Γ -ideal of S. Then $L \subseteq L\Gamma(S\Gamma L) \subseteq L\Gamma L \subseteq S\Gamma L \subseteq L$. So, $L = L\Gamma L$. By assumption, L is also a right Γ -ideal of S. It follows that

$$L = L\Gamma L = (L\Gamma L)\Gamma(L\Gamma L) = (L\Gamma L)^2 = (L\Gamma L \cup L\Gamma L)^2$$
$$\subseteq (L \cup L\Gamma S)^2 \subseteq (L \cup L)^2 = L\Gamma L = L.$$

This means that $(L \cup L\Gamma S)^2 = L$. In the other case, we can proved similarly. Conversely, let L be a left Γ -ideal of S. By assumption, we have

$$L\Gamma S = (L \cup L\Gamma S)^2 \Gamma S \subseteq (L \cup L\Gamma S) \Gamma (L\Gamma S \cup L\Gamma S)$$
$$= (L \cup L\Gamma S) \Gamma (L\Gamma S) \subseteq (L \cup L\Gamma S) \Gamma (L \cup L\Gamma S)$$
$$= (L \cup L\Gamma S)^2 = L.$$

Hence, L is a right Γ -ideal of S. In the same way, if R is a right Γ -ideal of S, then using (ii) we have that R is also a left Γ -ideal of S. Thus, S is duo. Next, we want to show that S is regular. Let $a \in S$. Then,

$$a \in (a)_r = ((a)_r \cup (a)_r \Gamma S)^2 \subseteq ((a)_r \cup (a)_r)^2$$
$$= (a)_r \Gamma(a)_r = (a)_r \Gamma(a)_l$$
$$= (a \cup a \Gamma S) \Gamma(a \cup S \Gamma a)$$
$$\subseteq a \Gamma a \cup a \Gamma S \Gamma a.$$

Consequently, S is regular.

Theorem 3.2. Let S be a Γ -semigroup. Then S is a regular duo Γ -semigroup if and only if $(B \cup S\Gamma B)^2 = B = (B \cup B\Gamma S)^2$, for each bi- Γ -ideal B of S.

Proof. Let B be any bi- Γ -ideal B of S. Now, consider

$$(B \cup B\Gamma S)^2 \subseteq B\Gamma B \cup B\Gamma B\Gamma S \cup B\Gamma S\Gamma B \cup B\Gamma S\Gamma B\Gamma S$$
$$\subseteq B\Gamma S \subseteq (B\Gamma S\Gamma B)\Gamma S$$
$$\subseteq B\Gamma S\Gamma (B\Gamma S\Gamma B)\Gamma S.$$

It is easy to see that $S\Gamma B$ is a left Γ -ideal of S. By the hypothesis, we obtain that $S\Gamma B$ is also a right Γ -ideal of S. Thus

 $B\Gamma S\Gamma B\Gamma S\Gamma B\Gamma S = (B\Gamma S\Gamma B)\Gamma((S\Gamma B)\Gamma S) \subseteq B\Gamma S\Gamma B \subseteq B.$

Hence $(B \cup B\Gamma S)^2 \subseteq B$. On the other hand,

 $B \subseteq (B)_r \subseteq (B)_r \Gamma S \Gamma(B)_r \subseteq (B)_r \Gamma(B)_r = (B \cup B \Gamma S)^2.$

Therefore, $B = (B \cup B\Gamma S)^2$. Similarly, we can show that $B = (B \cup S\Gamma B)^2$. This shows that $(B \cup S\Gamma B)^2 = B = (B \cup B\Gamma S)^2$.

Conversely, let L be a left Γ -ideal of S. Also, L is a bi- Γ -ideal of S. By the assumption, $L = (L \cup L\Gamma S)^2$. At the same time, for any right Γ -ideal R of S, $R = (R \cup S\Gamma R)^2$. By Theorem 3.1, we conclude that S is a regular duo Γ -semigroup.

Theorem 3.3. Let S be a Γ -semigroup. Then S is a regular duo Γ -semigroup if and only if $(Q \cup Q\Gamma S)^2 = Q = (Q \cup S\Gamma Q)^2$, for any quasi- Γ -ideal Q of S.

Proof. Assume that S is a regular duo Γ -semigroup. Let Q be a quasi- Γ -ideal of S. Then $(Q \cup Q\Gamma S)^2 \subseteq Q\Gamma Q \cup Q\Gamma Q\Gamma S \cup Q\Gamma S\Gamma Q \cup Q\Gamma S\Gamma Q\Gamma S \subseteq Q\Gamma S$. Since S is duo and $S\Gamma Q$ is a left Γ -ideal of S, it follows that

$$(Q \cup Q\Gamma S)^2 \subseteq Q\Gamma Q \cup Q\Gamma Q\Gamma S \cup Q\Gamma S\Gamma Q \cup Q\Gamma S\Gamma Q\Gamma S$$
$$\subseteq S\Gamma Q \cup (S\Gamma Q)\Gamma S$$
$$\subseteq S\Gamma Q \cup S\Gamma Q = S\Gamma Q.$$

This implies that $(Q \cup Q\Gamma S)^2 \subseteq Q\Gamma S \cap S\Gamma Q \subseteq Q$. As shown in the proof of Theorem 3.2, $Q \subseteq (Q \cup Q\Gamma S)^2$. Hence, $(Q \cup Q\Gamma S)^2 = Q$. Similarly, we can prove that $(Q \cup S\Gamma Q)^2 = Q$. Therefore, $(Q \cup Q\Gamma S)^2 = Q = (Q \cup S\Gamma Q)^2$.

Conversely, let L and R be any left Γ -ideal and right Γ -ideal of S, respectively. Then, L and R are quasi- Γ -ideals of S. By using the hypothesis, we have that $L = (L \cup L\Gamma S)^2$ and $R = (R \cup S\Gamma R)^2$. By Theorem 3.1, it turns out that S is a regular duo Γ -semigroup.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- S. Chattopadhyay, On right inverse Γ-semigroup, Konuralp Journal of Mathematics, 3, no. 2, (2015), 140–151.
- [2] R. Chinram, On quasi-gamma-ideals in gamma-semigroups, ScienceAsia, 32, (2006), 351–353.
- [3] R. Chinram, C. Jirojkul, On bi-Γ-ideals in Γ-semigroups, Songklanakarin J. Sci. Tech., 29, no, 1, (2007), 231–234.
- [4] T. K. Dutta, N. C. Adhikari, On Γ-semigroup with right and left unities, Soochow Journal of Mathematics, 19, no. 4, (1993), 461–474.
- [5] K. Hila, On regular, semiprime and quasi-reflexive Γ-semigroup and minimal quasi-ideals, Lobachevskii Journal of Mathematics, 29, no. 3, (2008), 141–152.
- [6] N. Kehayopulu, On regular duo po-Γ-semigroups, Mathematica Slovaca, 61, no. 6, (2011), 871–884.
- [7] P. Luangchaisri, T. Changphas, On completely regular 2-duo semigroups, Quasigroups and Related Systems, 29, (2021), 89–96.
- [8] A. Mahboob, N. M. Khan, Pure Γ-ideals in Γ-semigroups, Afrika Mathematika, 32, (2021), 1201–1210.
- [9] S. Lajos, A new characterizations of regular duo semigroups, Proc. Japan Acad., 47, (1971), 394–395.
- [10] E. Pasku, The adjoint semigroup of a Γ-semigroup, Novi Sad J. Math., 47, no. 2, (2017), 31–39.
- [11] D. M. Rao, A. Anjaneyulu, A. G. Rao, Primary and semiprimary Γideals in Γ-semigroups, International Journal of Mathematical Sciences, Technology and Humanities, 29, (2012), 282–293.
- [12] N. K. Saha, On Γ-semigroups, Bull. Cal. Math. Soc., 79, (1987), 331– 335.
- [13] M. K. Sen, On Γ-semigroups, Algebra and its Applications, Lecture Notes in Pure and Applied Mathematics, 91, Decker, New York 1984, 301–308.

- [14] A. Seth, Γ-group congruences on regular Γ-semigroups, Int. J. Math. & Math. Sci., 15, no. 1, (1992), 103–106.
- [15] T. Xhillari, I. Braja, Completely regular Γ-semigroups, International Journal of Algebra, 4, no. 20, (2010), 995–1002.