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Abstract

In this paper, we present a simple numerical technique based on

optical frequency domain reflectometry. Nonlinear Schrödinger having

anti-cubic equation is suggested for computing a new solitons-solutions

propagation. The dispersion is to be calculated from variations in the

frequency chirp rate, when frequency-chirped light is utilized as the

light source. We utilize an accurate model of the average dispersion,

in fibers up to several tens of kilometers. The numerical simulation

is obtained by applying variable perturbation theory on the group

velocity dispersion term in nonlinear Schrödinger having anti-cubic

equation. The proposed model is used with some particular conditions;

to be significantly more accurate for links with strong nonlinearities

and high dispersion.

1 Introduction

Mathematical models are often utilized to get a fundamental knowledge of
optical fiber propagation processes. The nonlinear Schrödinger equation
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(NLSE) is a partial differential equation (PDE) that governs the propaga-
tion through an optical fiber. Attenuation, second order dispersion, and Kerr
nonlinearity are the three primary impacts of that PDE. The NLSE does not
have an analytical response for an arbitrary input pulse when the three effects
are taken into account collectively. We cite how the numerical method is very
useful to solving such as split step Fourier method SSFM [1, 2]. However, in
general, each numerical technique has its own benefits and drawbacks. The
method’s computing complexity becomes a limiting issue for a large number
of steps. Finite elements as a numerical technique is used to ignore limits
because optical fiber for this paper has a simple rectangular domain [3]. An-
alytical models also are typically utilized to get around this constraint. It is
particularly desired to have an analytical model, that is simple to manipulate
mathematically, since it may be utilized to enhance optic fiber transmission.
Mathematical tools are used to create better models, since authors approxi-
mate the NLSE several analytical methods [4, 5, 6]. The work [7] contains a
thorough review of optical channel models. Depending on the approximation
that was used to create it, each model will operate in a specific regime. The
group-velocity dispersion (GVD) parameter, the Kerr nonlinear coefficient,
and the input power are used by the regimes to categorize models [8].
The schematic representation of some major operational regimes and models
found in the literature is shown in 1. The fiber degenerates into an additive
Gaussian noise (AGN) channel, in the presence of noise, if both the linear
and nonlinear coefficients are zero and no intriguing effects of fiber prop-
agation are seen. When the linear coefficient is zero (D = 0) see Fig 1,
as shown by region 2 of Fig 1 [16, 17, 9], one of the easiest regimes to ac-
count for fiber propagation effects. When the nonlinear coefficients are zero
(

bi = 0, i = 1, 3
)

see Fig 1, a different straightforward model appears, which
is depicted by region 1 of Fig 1. The so-called dispersion-only model provides
an accurate solution in this situation [16]. According to the NLSE [16], the
phase response of the all-pass filter that represents fiber propagation rises
with the square of the frequency. The model is perfect for low power regimes
where the dispersion is the primary influence since it takes zero nonlinearities
into account.
Region 3 in Fig 1 represents the regular perturbation (RP) theory on the
nonlinear coefficient, which is a more appropriate model [10, 18]. As will be
shown in the nonlinear term of NLSE, the nonlinearities rely on the signal
times the square of the absolute magnitude of the signal. If we compare to
the dispersion-only model, RP on the nonlinear coefficient is accurate over a
larger range of powers. Due to its greater scope, the RP model can simulate
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Figure 1: Validity ranges for different models of the NLSE. Each region is
identified by a combination of |D| and bi, i = 1, 3 values. These models are
derived using approximations based on the magnitude of these two parame-
ters.

a variety of communication systems.
As a model for the weak-dispersion regime symbolized by region 4, authors
in [8] suggested a perturbation on the linear coefficient of the NLSE, but in
[4, 5, 6] they considered GVD’s value as a constant. For more details of other
models see [8].
The aforementioned models only cover Fig 1’s regions 1, 2, 3, and 4. There
are no models about region 5 in the available literature. The latter refers to
regimes with high linear and nonlinear coefficients that may be fully captured
by perturbation models, including their temporal and spatial components.
The absolute value of the linear coefficient is significant in region 5.
Every model that currently exists in the literature is constrained to a certain
operating regime. Here, we offer an important model for the high dispersion
nonlinear optical fiber channel, with anti-cubic (AC), cubic and quintic non-
linear terms. A careful balance between group velocity dispersion (GVD)
and nonlinearities, which promotes the sustainability of the soliton propaga-
tion, continues to exist. The one dimensional NLSE’s high linear dispersion
relation with strong nonlinear AC coefficients has received very little atten-
tion despite being a universal model. In this paper, we are interested in
high GVD linear coefficient of optical fibers according to a frequency-shifted
feedback fiber laser models, where both linear GVD and nonlinear anti-cubic
coefficients are large and do not exist in the published literature.
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The remainder of this research is organized as follows: In section 2, we
combine GVD formula with NLSE having AC to get the solitary solutions
propagation. In section 3, we solve the NLSE by Comsol multiphysics then
we discuss the obtained results, and their novelty compared with previous
models. Section 4 presents the conclusions.

2 Mathematical analysis

The dynamics of soliton propagation through an optical fiber having anti-
cubic nonlinearity is written as the following NLSE [11]:

i
∂q(t, x)

∂t
+D

∂2q(t, x)

∂x2
+
(

b1|q(t, x)|
−4 + b2|q(t, x)|

2 + b3|q(t, x)|
4
)

q(t, x) = 0,

(2.1)
where q(x, t) represents the macroscopic complex-valued wave profile, x and
t are the spatial and temporal variables, respectively. Furthermore, D is the
coefficient of GVD spatial dispersion. Also, b1 6= 0 there is AC nonlinear
term, whereas b2 and b3 are cubic and quintic nonlinearity coefficients, re-
spectively [13]. In case b3 = 0, parabolic low nonlinearity happen [14, 15].
We propose the following:

ξ = x− λt+ x0 with λ = −2τD, (2.2)

when τ is a nonzero real constant and x0 is the position at t0.
Now, we define GVD’s theoretical law of frequency-shifted feedback fiber
laser; the GVD D [3] can be directly determined from a change of beat
frequency ∂fB ; it is given by:

D =
c∂fB

2λ2
γLγ

2∆t
, (2.3)

where γ is the light frequency chirp rate, λγ is the light wavelength, L is the
optical fiber length and c is the speed of light.
From (2.2) we can find:

∂ξ = 2τD∂t, (2.4)

also, we can write:

∆t =
1

2τD
∂ξ. (2.5)

Substituting (2.5) in (2.3) yields:

∂ξ =
cτ∂fB

λ2
γLγ

2
. (2.6)
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Figure 2: Coupling step: enter the equations to coupling the formula (2.1)
with the GVD (2.8).

After integrating (2.6) and using (2.2), we can find the next formula of GVD:

D =
−x − x0

2τt
+

cteλγ
2Lγ2

2τt (λγ
2Lγ2 − τc∂fB)

, (2.7)

where t 6= 0 and 2τλ2

γcγ
2 6= 2τ 2∂fB and cte is the constant integration.

At (t0 6= 0, x0) we find cte =
(

D0 +
x0

τt0

)

2τt(λγ
2Lγ2

−τc∂fB)
λγ

2Lγ2 , where equation

(2.7) becomes

D =
−x− x0

2τt
+

x0

τt0
+D0, (2.8)

where D0 is a known initial GVD value.
Boundary and initial conditions: we use [3] to propose and construct
the following conditions:

q (x0, t) = sin (2x0 + 2τD0t+ x0) , (2.9)

q (t) = −6sech (t)2 , x0 and X, (2.10)

with X is the length of channel and t ∈ [0, 1] .

3 Numerical simulation by Comsol multiphysics

Here, we summarize the important steps to combining (2.1) with (2.8) by
using Comsol multiphysics:
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Application of periodic boundary condition:

Figure 3: Choice of the boundary conditions step.

Optical periodic solitons-solutions:

Figure 4: Resulting step: the propagation of solitons-solutions for x ∈
[−50, 50] .

4 Conclusion

The solutions are altered by cubic, quintic and AC terms in a parameterized
way. We show that the change of parameters is reasonable according to [3]
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see Fig 4. This paper helps to find new style of optical solitons-solutions for
NLSE by using second spatiotemporal dispersion non-constant coefficient.
The obtaining solitons-solutions respect to various parameters are shown in
figure Fig 4. These new solitons with arbitrary parameters may be important
to explain optical fiber communications interpretations; we believe that our
model can be applied to other fields where the NLSE is applicable. Also,
results indicate that simple technique can be extended to other new types of
nonlinear partial differential equations.
Cameras may be utilized in water tanks with clear sidewalls to capture the
completely spatio-temporal dynamics [12], but our numerical model can be
very useful to replace all those materials.
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[12] I. Redor, E. Barthélemy, H. Michellet, M. Onorato, N. Mordant, Exper-
imental evidence of a hydrodynamic soliton gas, Phys. Rev. Lett., 122,
(2019), 214502.

[13] A. U. Awan, H. U. Rehman, M. Tahir, M. Ramzan, Optical soliton
solutions for resonant Schrödinger equation with anti-cubic nonlinearity,
Optik – Int. J. Light Electron Opt., 227z, (2021), 165496.

[14] E. M. E. Zayed, M. E. M. Alngar, A. G. Al-Nowehy, On solving the non-
linear Schrödinger equation with an anti-cubic nonlinearity in presence
of Hamiltonian perturbation terms, Optik – Int. J. Light Electron Opt.,
178, (2019), 488–508.

[15] Z. Pinar, H. Rezazadeh, M. Eslami, Generalized logistic equation
method for Kerr law and dual power law Schrödinger equations, Opt.
Quant. Electron, 52, no. 12, (2020), 1–16.

[16] G. Agrawal, Nonlinear fiber optics, Optics and photonics, 5th ed., Aca-
demic Press, Boston, 2013, 27–128.

[17] K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, S. K. Turitsyn, Infor-
mation capacity of optical fiber channels with zero average dispersion,
Phys. Rev. Lett. 91, (2003), 203901-1-203901-4.

[18] E. Forestieri, M. Secondini, Solving the nonlinear Schrödinger equa-
tion, In optical communication theory and techniques, Springer, Boston,
2005, 3-11.


