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Abstract

Homotopy perturbation method (HPM) is applied to approximate
and simulate the cell-cell adhesion model.

1 Introduction

Cell-cell adhesion is a biological phenomenon which describes how one cell
binds to another by proteins on the surface of the cell, known as cell adhesion
molecules (CAMs) [1, 2, 3, 4]. Graner and Galzier in 1992-1993 [6, 5], stud-
ied this phenomena where they adopted the Pott model to a biological cell
population. Armstrong et al. in 2006 have derived a mathematical model to
describe this phenomenon given by the non-local reaction diffusion equation:

∂

∂t
n(t, x) = D

∂2

∂x2
n(t, x)− ∂

∂x
(n(t, x)K(n(t, x))), (1.1)

where

K(n(t, x)) =
αφ

R

∫ R

−R

g(n(t, x+ y))ω(y)dy.
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φ is viscosity constant, D is the diffusion rate, α is a positive parameter
reflecting the strength of adhesion force between the cells, and R the radius
of the cell sense to its ambient. The function g(n) is given by

g(n) =

{

n(1− n/M), n < M,
0, n ≥ M,

(1.2)

where the constant M represents the crowding capacity of the population.
ω(y) is considered to be an odd function such

ω(y) =

{

1, 0 < y < T,
−1, −R < y < 0.

(1.3)

Assume

x∗ =
x

R
, t∗ =

Dt

R2
, n∗ =

n

n0

, α∗ =
αφRM

D
.

Then (1.1) reduces to

∂

∂t
n(t, x) =

∂2

∂x2
n(t, x)− ∂

∂x
(n(t, x)K(n(t, x))), (1.4)

where

K(n(t, x)) = α

∫ 1

−1

g(n(t, x+ y))ω(y)dy,

and the non-dimensionalised logistic force function g(n) is g(n) = n(1 − n).
The authors showed that the homogeneous steady state solution U is linearly
unstable provided that

1

2αU
k2 < 1− cos(k),

where the constant k is the wave number.
Now, the above model does not take into consideration cell division and

lose. Sherratt et al. [9] add to Armstrong model the cell kinetics function
f(n) to represent the cell division and cell loss. The new model is given by
the following non-local reaction diffusion equation:

∂

∂t
n(t, x) = D

∂2

∂x2
n(t, x)− ∂

∂x
(n(t, x)K(n(t, x))) + f(n), (1.5)

where

K(n(t, x)) =
αφ

R

∫ R

−R

g(n(t, x+ y))ω(y)dy.
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The standard choice of the function f(n) is the logistic function f(n) =
µn (1−n/n0), where µ is a positive constant. The authors used the following
scaling:

x∗ =
x

R
, t∗ =

Dt

R2
, n∗ =

2n

M
, α∗ =

αφM

4D
, µ∗ =

µR2

D
, n∗

0 =
2n0

M
,

so the non-dimensionalised problem is given by

∂n(t, x)

∂t
=

∂2n(t, x)

∂x2
− α

∂

∂x

[

n(t, x)

∫ 1

−1

max {n(t, x+ y)(2− n(t, x+ y)), 0} sign(y) dy
]

+ µn(1− n/n0). (1.6)

If n0 < 2, then n = n0 is a homogeneous steady state solution for this
equation. The linear stability shows that n = n0 is unstable provided that

4αn0(1− n0) >
4θ2 + µ

2 sin2 θ
,

where θ ∈ (0, π/2) is the solution of tan θ = 4θ2+µ

4θ
[9].

The aim of this article is to employ (HPM) to approximate and simulate
the solution of the model above.

2 Basics in the Homotopy PerturbationMethod

Homotopy Perturbation method (HPM) was first considered by Ji-Huan He
[7, 8] for solving linear and nonlinear differential equations. The basic idea
of this method is to couple the perturbation method and the homotopy in
topology. The method yields a very rapid convergence of the solution series
in most cases [7]. To illustrate the (HPM) for solving differential equations,
he [7, 8] considered the following nonlinear differential equation:

A(u) = f(r), r ∈ Ω (2.1)

subject to the boundary condition B(u, ∂u
∂n
) = 0, r ∈ ∂Ω. where A is a

general differential operator, b is a boundary operator, f(r) is a known an-
alytic function, and ∂u

∂n
is the differentiation along the normal vector drown

outwards from Ω.
The operator A in equation (2.1) can be split as L and N , linear operator

and N non-linear operators, respectively. So, equation (2.1) becomes

L(u) +N(u) = f(r) r ∈ Ω. (2.2)
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His idea is to construct a homotopy ν(r, λ) : Ω× [0, 1] → R which satisfies

H(ν, λ) = (1− λ) [L(ν)− L(u0)] + λ [A(ν)− f(r)] = 0, (2.3)

where u0 is the initial approximation of u. By substituting A(u) = L(u) +
N(u) in the above equation, we get

H(ν, λ) = L(ν)− L(u0) + λL(u0) + λ [N(ν)− f(r)] = 0,

where λ ∈ [0, 1]. Clearly, H(ν, 0) = L(ν) − L(u0) = 0 and A(ν) − f(r) = 0.
Thus, H(ν, 0) = L(ν) − L(u0) and A(ν) − f(r) are homotopic. According
to this method the parameter λ is small. Hence, the solution ν of equation
(2.3) can be written as a power series in λ. Particularly,

ν =

∞
∑

k=0

νkλ
k. (2.4)

Thus, if we let λ → 1, then ν =
∑

∞

k=0 νk. Moreover, if we set λ = 1 in

equation (2.3), then A(ν) − f(r) = 0. This implies that u = lim
λ→1

∞
∑

k=0

νkλ
k is

approximating the solution of (2.1). For more readings about the convergence
of (2.4), we refer the reader to [7, 8].

3 Approximating the Solution of Cell-Cell Ad-

hesion Model

In this section, we employ the (HPM) to approximate the solution of

∂n(t, x)

∂t
=

∂2n(t, x)

∂x2
− α

∂

∂x

[

n(t, x)

∫ 1

−1

max {n(t, x+ y)(2− n(t, x+ y)), 0} sign(y) dy
]

+ µn(1− n/M). (3.1)

Assume that 0 ≤ n(t, x) ≤ M ≤ 2. Then the above model can be reduced
to

∂n(t, x)

∂t
=

∂2n(t, x)

∂x2
− α

∂

∂x

[

n(t, x)

∫ 1

−1

n(t, x+ y)(2− n(t, x+ y))sign(y) dy

]

+ µn(1− n/M). (3.2)
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This leads us to consider the following general case of (3.2):

∂n(t, x)

∂t
=

∂2n(t, x)

∂x2
− α

∂

∂x

[

n(t, x)

∫ 1

−1

f(n(t, x+ y))sign(y) dy

]

+ µn(1− n/M), (3.3)

where f(n) is assumed to be C∞−function. To simplify the calculations, we
rewrite (3.3) as the following:

nt(t, x) = nxx(t, x) + α

[

n(t, x)

(
∫ 0

−1

f(n(t, x+ y)) dy −
∫ 1

0

f(n(t, x+ y)) dy

)]

x

+ µn(1− n/M),

= nxx(t, x) + α
[

n(t, x)
(

K−(t, x)−K+(t, x)
)]

x
+ µn(1− n/M)

= nxx(t, x) + αnx(t, x)
(

K−(t, x)−K+(t, x)
)

+ αn(t, x)
(

K−(t, x)−K+(t, x)
)

x
+ µn(1− n/M), (3.4)

where

K−(t, x) =

∫ 0

−1

f(n(t, x+ y)) dy =

∫ x

x−1

f(n(t, y)) dy

and

K+(t, x) =

∫ 1

0

f(n(t, x+ y)) dy

∫ x+1

x

f(n(t, y)) dy.

To apply the homotopy perturbation method, we assume that n = n0 +
n1p+ n2p

2 + n3p
3 · · · . Then,

nt = n0t + n1tp+ n2tp
2 + n3tp

3 · · · ,

nx = n0x + n1xp+ n2xp
2 + n3xp

3 · · · ,

nxx = n0xx + n1xxp+ n2xxp
2 + n3xxp

3 · · · ,

and

µn(1− n) = µn0(1− n0) + µ (n1(1− n0)− n0n1) p+ µ
(

n2(1− n0)− n0n2 − n2
1

)

p2

+ µ (n3(1− n0)− 2n1n2 − n0n3) p
3 · · · .

To expand the terms K−(t, x) and K+(t, x) in a powers of p, we expand f(n)
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using Taylor expansion about n0. Particularly, we have

f(n) = f(n0) + f ′(n0)
[

n1p+ n2p
2 + n3p

3 · · ·
]

+
f ′′(n0)

2!

[

n1p+ n2p
2 + n3p

3 · · ·
]2

+
f ′′′(n0)

3!

[

n1p+ n2p
2 + n3p

3 · · ·
]3

+ · · ·
= f(n0) + (f ′ (n0)n1) p+

(

f ′(n0)n2 +
f ′′(n0)

2!
(n1)

2

)

p2

+

(

f ′(n0)n3 +
f ′′(n0)

2!
(n1)n2 +

f ′′′(n0)

3!
(n1)

3

)

p3 + · · · .

Using this expansion of f(n), we have

K−(t, x) =

∫ 0

−1

f(n(t, x+ y))dy (3.5)

=

∫ 0

−1

(

f(n0) + (f ′ (n0)n1) p+

(

f ′(n0)n2 +
f ′′(n0)

2!
(n1)

2

)

p2(3.6)

+

(

f ′(n0)n3 +
f ′′(n0)

2!
(n1)n2 +

f ′′′(n0)

3!
(n1)

3

)

p3 + · · ·
)

dy(3.7)

= K−

0 (t, x) +K−

1 (t, x)p+K−

2 (t, x)p
2 +K−

3 (t, x)p
3 + · · · , (3.8)

where

K−

0 (t, x) =

∫ 0

−1

f(n0(t, x+ y))dy,

K−

1 (t, x) =

∫ 0

−1

(f ′ (n0(t, x+ y))n1(t, x+ y)) ,

K−

2 (t, x) =

∫ 0

−1

(

f ′(n0(t, x+ y))n2(t, x+ y) +
f ′′(n0(t, x+ y))

2!
(n1(t, x+ y))2

)

dy,

and

K−

3 (t, x) =

∫ 0

−1

(

f ′(n0)n3
f ′′(n0)

2!
(n1)n2 +

f ′′′(n0)

3!
(n1)

3

)
∣

∣

∣

∣

(t,x+y)

dy.

Similarly, we have

K+(t, x) = K+
0 (t, x) +K+

1 (t, x)p +K+
2 (t, x)p

2 +K+
3 (t, x)p

3 + · · · ,
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where

K+
0 (t, x) =

∫ 1

0

f(n0(t, x+ y))dy,

K+
1 (t, x) =

∫ 1

0

(f ′ (n0(t, x+ y))n1(t, x+ y)) ,

K+
2 (t, x) =

∫ 1

0

(

f ′(n0(t, x+ y))n2(t, x+ y) +
f ′′(n0(t, x+ y))

2!
(n1(t, x+ y))2

)

dy,

and

K+
3 (t, x) =

∫ 1

0

(

f ′(n0)n3
f ′′(n0)

2!
(n1)n2 +

f ′′′(n0)

3!
(n1)

3

)
∣

∣

∣

∣

(t,x+y)

dy.

By substituting K− and K+ in nx(t, x), we get

nx(t, x)K
−(t, x) = n0xK

−

0 (t, x) +
(

n1xK
−

0 (t, x) + n0xK
−

1 (t, x)
)

p

+
(

n2xK
−

0 (t, x) + n1xK
−

1 (t, x) + n0xK
−

0 (t, x)
)

p2

+
(

n3xK
−

0 (t, x) + n2xK
−

1 (t, x) + n1xK
−

2 (t, x) + n0xK
−

3 (t, x)
)

p3

+ · · · , (3.9)

nx(t, x)K
+(t, x) = n0xK

+
0 (t, x) +

(

n1xK
+
0 (t, x) + n0xK

+
1 (t, x)

)

p

+
(

n2xK
+
0 (t, x) + n1xK

+
1 (t, x) + n0xK

+
0 (t, x)

)

p2

+
(

n3xK
+
0 (t, x) + n2xK

+
1 (t, x) + n1xK

+
2 (t, x) + n0xK

+
3 (t, x)

)

p3

+ · · · , (3.10)

nx(t, x)(K
−(t, x))x = n0K

−

0x(t, x) +
(

n1K
−

0x(t, x) + n0K
−

1x(t, x)
)

p

+
(

n2K
−

0x(t, x) + n1K
−

1x(t, x) + n0K
−

0x(t, x)
)

p2

+
(

n3K
−

0x(t, x) + n2K
−

1x(t, x) + n1K
−

2x(t, x) + n0K
−

3x(t, x)
)

p3

+ · · · , (3.11)

and

nx(t, x)(K
+(t, x))x = n0K

+
0x(t, x) +

(

n1K
+
0x(t, x) + n0K

+
1x(t, x)

)

p

+
(

n2K
+
0x(t, x) + n1K

+
1x(t, x) + n0K

+
0x(t, x)

)

p2

+
(

n3K
+
0x(t, x) + n2K

+
1x(t, x) + n1K

+
2x(t, x) + n0K

+
3x(t, x)

)

p3

+ · · · . (3.12)
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By substituting the perturbed formula of nt, nx, and nxx in (3.4), we get

n0t + n1tp + n2tp
2 + n3tp

3 · · · = p
[

n0xx + n1xxp + n2xxp
2 + n3xxp

3 · · ·
]

+ αp
[

n0xK
−

0 (t, x) +
(

n1xK
−

0 (t, x) + n0xK
−

1 (t, x)
)

p +
(

n2xK
−

0 (t, x) + n1xK
−

1 (t, x) + n0xK
−

0 (t, x)
)

p2 +
(

n3xK
−

0 (t, x) + n2xK
−

1 (t, x) + n1xK
−

2 (t, x) + n0xK
−

3 (t, x)
)

p3 +

· · · ]
+ αp

[

n0K
−

0x(t, x) +
(

n1K
−

0x(t, x) + n0K
−

1x(t, x)
)

p+
(

n2K
−

0x(t, x) + n1K
−

1x(t, x) + n0K
−

0x(t, x)
)

p2 +
(

n3K
−

0x(t, x) + n2K
−

1x(t, x) + n1K
−

2x(t, x) + n0K
−

3x(t, x)
)

p3 +

· · · ]
− αp

[

n0xK
−

0 (t, x) +
(

n1xK
−

0 (t, x) + n0xK
−

1 (t, x)
)

p +
(

n2xK
−

0 (t, x) + n1xK
−

1 (t, x) + n0xK
−

0 (t, x)
)

p2 +
(

n3xK
−

0 (t, x) + n2xK
−

1 (t, x) + n1xK
−

2 (t, x) + n0xK
−

3 (t, x)
)

p3 +

· · · ]
− αp

[

n0K
−

0x(t, x) +
(

n1K
−

0x(t, x) + n0K
−

1x(t, x)
)

p+
(

n2K
−

0x(t, x) + n1K
−

1x(t, x) + n0K
−

0x(t, x)
)

p2 +
(

n3K
−

0x(t, x) + n2K
−

1x(t, x) + n1K
−

2x(t, x) + n0K
−

3x(t, x)
)

p3 +

· · · ]
+ µp

[

n0(1− n0) + (n1(1− n0)− n0n1) p+
(

n2(1− n0)− n0n2 − n2
1

)

p2+

(n3(1− n0)− 2n1n2 − n0n3) p
3 · · ·

]

. (3.13)

By matching the coefficients of pi, we get

p0 : n0t = 0

p1 : n1t = n0xx − αn0K0x − αn0xK0 + µn0(1− n0)

p2 : n2t = n1xx − α (n0K1x + n1K0x)− (n1xK0 + n0xK1) + µ (n1(1− n0)− n0n1)

p3 : n3t = n2xx − α (n0K2x + n1K1x + n2K0x)− α (n2xK0 + n1xK1 + n0xK2) +

µ
(

n2(1− n0)− n0n2 − n2
1

)

,

...
...

where the initial data to solve the above system of differential equations are
n0(0, x) = f(x) and n1(0, x) = n2(0, x) = n3(0, x) = · · · = 0. Thus, the
solution of (3.1) by using the (HPM) is given by

n(t, x) = lim
p→1

(

n0(t, x) + n1(t, x)p + n2(t, x)p
2 + · · ·

)

.
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Example 3.1. Consider (3.1) with the initial data n(0, x) = M where M is

a positive constant such that 0 < M < 2. Then, simple calculations show that

n0(t, x) = M , n1(t, x) = M(1 − M)t, n2(t, x) = M(1 − M)(1 − 2M) t
2

2!
,and

n3(t, x) = M(1 −M)(1− 2M)(1− 6m+ 6M2) t
3

3!
. Thus,

n(t, x) = M +M(1 −M)t +M(1−M)(1 − 2M)
t2

2!
+M(1−M)(1 − 2M)(1− 6m+ 6M2)

t3

3!
· · ·

=
Mtt

1−M +Met
.

In the following section, we use the above approximations along with a
numerical simulation to approximate the solution of (3.1) with the initial
data n(0, x) = exp{−x2

2
}.

4 Numerical Simulation

In this section, we apply a numerical scheme for our perturbation method to
simulate the solution of the reaction diffusion equation (1.6) with the initial
data n(0, x) = exp{−x2

2
} and the parameters α = 1, µ = 1 and n0 = 1.8.

Thus,

n0(t, x) = exp{−x2

2
}

and the first approximation is given by

n1 =
1

2

√
πte−

x
2

2 xerf(1− x) +
√
2πte−

x
2

2 xerf

(

x− 1√
2

)

+
√
πte−

x
2

2 xerf(x)−

2
√
2πte−

x
2

2 xerf

(

x√
2

)

−1

2

√
πte−

x
2

2 xerf(x+1)+
√
2πte−

x
2

2 xerf

(

x+ 1√
2

)

+te−
x
2

2 x2−2te−
3x

2

2 +

7

2
te−x2

+ te−
x
2

2
−(1−x)2 − 2te−

x
2

2
−

1

2
(1−x)2 + te−

x
2

2
−(x+1)2 − 2te−

x
2

2
−

1

2
(x+1)2 .

This approximation is given in the following figure which shows a good
stability for the solution when the time is relatively small.

Also, by implementation the numerical scheme for this method on equa-
tion (1.6) with the Dirichlet boundary conditions and the parameters R =
π, µ = 1, α = 0.01, and n0 = 1, we get the following figure:
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Figure 1: The values of the parameters are R = 5, µ = 1, α = 1, and
n0 = 1.8. The initial data is n(0, x) = exp{−x2

2
}.

Figure 2: Dirichlet boundary conditions case. The values of the parameters
are R = π, µ = 1, α = 0.01, and n0 = 1. The initial condition is φ(x) =
1 + sin(π

2
− x), −π ≤ x ≤ π. In this case, the solution n(t, x) converges to a

nonnegative and not identically zero solution for large time t.
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The figure shows that equation (1.6) admits a non-negative and not iden-
tically zero steady state solution, also showing that the steady state solution
is asymptotically stable. Thus, it is an interesting problem to study, ana-
lytically, the existence and the global stability of such steady state solution.
Instantly, this problem is very complicated and it needs more analysis. As
such, we leave it as an open problem for a future work.
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