Extension of φ-centralizers on semiprime rings

Abu Zaid Ansari ${ }^{1}$, Faiza Shujat ${ }^{2}$
${ }^{1}$ Department of Mathematics
Faculty of Science
Islamic University of Madinah
Madinah, K.S.A.
${ }^{2}$ Department of Mathematics
Faculty of Science
Taibah University
Madinah, K.S.A.

email: ansari.abuzaid@gmail.com, faiza.shujat@gmail.com
(Received September 23, 2023, Accepted October 24, 2023, Published November 10, 2023)

Abstract

The objective of this research paper is to justify that an additive mapping \digamma from a semiprime ring R to itself will be φ-centralizer having a suitable torsion restriction on R if it satisfies certain algebraic equations.

1 Introduction

Throughout this paper, R stands for an associative ring with unity e. A ring R is called p-torsion free, where p is positive integer, if $p r=0$ implies $r=0$ for all $r \in R$. A ring R is called prime if $r R t=\{0\}$ entails either $r=0$ or $t=0$, and is known as semiprime if $r R r=\{0\}$ yields $r=0$. Helgosen [5] introduced the idea of centralizers on Banach algebras. A mapping $\digamma: R \rightarrow R$ is called a right (left) centralizer if it is additive and satisfies $\digamma(r t)=r \digamma(t)$

Key words and phrases: Semiprime ring, left (right) φ-centralizer, algebraic identities.
AMS (MOS) Subject Classifications: 16N60, 16B99, 16W25.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
$(\digamma(r t)=\digamma(r) t)$ for all $r, t \in R$. In particular, it is called a Jordan right (Jordan left) centralizer if $r=t$. If \digamma is both a Jordan right centralizer and a Jordan left centralizer, then it is simply called a Jordan centralizer. Albas [1] called $\digamma: R \rightarrow R$ is called a right (left) φ-centralizer if $\digamma(r t)=\varphi(r) \digamma(t)$ $(\digamma(r t)=\digamma(r) \varphi(t))$ and it is additive, for every element $r, t \in R$ and F is known as a Jordan right (Jordan left) φ-centralizer if $\digamma\left(r^{2}\right)=\varphi(r) \digamma(r)$ $\left(\digamma\left(r^{2}\right)=\digamma(r) \varphi(r)\right)$ for all $r \in R$, where φ is an endomorphism defined on R. The mapping \digamma is calleds a φ-centralizer, in case \digamma is both right as well as left φ-centralizer. Every Jordan φ-centralizer is a φ-centralizer. However, the converse is not generally true. The converse of this statement is true under suitable torsion restriction on a semiprime ring [1]. For some recent extensions of the above results, the reader is referred to [2, 3]. Based on these findings, the authors of this work provide an extension of these mathematical assertions. More precisely, $\digamma: R \rightarrow R$ will be a φ-centralizer, if \digamma satisfies $3 \digamma\left(r^{n} s^{n} r^{n}\right)=\digamma\left(r^{n}\right) \varphi\left(s^{n} r^{n}\right)+\varphi\left(r^{n}\right) \digamma\left(s^{n}\right) \varphi\left(r^{n}\right)+\varphi\left(r^{n} s^{n}\right) \digamma\left(r^{n}\right)$, for all r in a suitably torsion restricted semiprime ring R. The subsequent result is necessary to prove the fundamental theorem:

Lemma 1.1 ([4]). Assume that R is a semiprime ring with the 2-torsion free condition and let $\digamma: R \rightarrow R$ be an additive mapping satisfying the algebraic identity $2 \digamma\left(r^{2}\right)=\digamma(r) \varphi(r)+\varphi(r) \digamma(r)$ for all $r \in R$, where φ is a surjective endomorphism on R. Then \digamma will be a φ-centralizer on R.

2 Main result

Theorem 2.1. Every additive mapping T from a n!-torsion free semiprime ring R to itself is a φ-centralizer if it satisfies the algebraic condition $3 \digamma\left(r^{n} s^{n} r^{n}\right)=$ $\digamma\left(r^{n}\right) \varphi\left(s^{n} r^{n}\right)+\varphi\left(r^{n}\right) \digamma\left(s^{n}\right) \varphi\left(r^{n}\right)+\varphi\left(r^{n} s^{n}\right) \digamma\left(r^{n}\right), \forall r, s \in R$, where $n \geq 1$ is a fixed integer.

Proof. Since

$$
\begin{equation*}
3 \digamma\left(r^{n} s^{n} r^{n}\right)=\digamma\left(r^{n}\right) \varphi\left(s^{n} r^{n}\right)+\varphi\left(r^{n}\right) \digamma\left(s^{n}\right) \varphi\left(r^{n}\right)+\varphi\left(r^{n} s^{n}\right) \digamma\left(r^{n}\right), \tag{2.1}
\end{equation*}
$$

$\forall r, s \in R$ then, in particular, choosing the identity e for r in (2.1), we find that

$$
\begin{equation*}
2 \digamma\left(s^{n}\right)=\digamma(e) \varphi\left(s^{n}\right)+\varphi\left(s^{n}\right) \digamma(e), \forall s \in R . \tag{2.2}
\end{equation*}
$$

On the other hand, in particular, choosing the identity e for s in (2.1), we obtain

$$
\begin{equation*}
3 \digamma\left(r^{2 n}\right)=\digamma\left(r^{n}\right) \varphi\left(r^{n}\right)+\varphi\left(r^{n}\right) \digamma(e) \varphi\left(r^{n}\right)+\varphi\left(r^{n}\right) \digamma\left(r^{n}\right), \forall r \in R . \tag{2.3}
\end{equation*}
$$

Next, replacing s by $k s+e$ in equation (2.2), we have

$$
\sum_{i=0}^{n}\binom{n}{i} k^{n-i}\left[2 \digamma\left(s^{n-i}\right)-\varphi\left(s^{n-i}\right) \digamma(e)-\digamma(e) \varphi\left(s^{n-i}\right)\right]=0 \forall s \in R, k \in \mathbb{Z}^{+} .
$$

Putting $k=1,2,3 \ldots, n-1$ one by one, we get a homogeneous system of $n-1$ linear equations with trivial solution. Hence all coefficients of k^{i} are equal to zero which yields that $\binom{n}{i} k^{n-i}\left[2 \digamma\left(s^{n-i}\right)-\varphi\left(s^{n-i}\right) \digamma(e)-\digamma(e) \varphi\left(s^{n-i}\right)\right]=$ 0 for every $s \in R$. In particular, replacing $i=n-1$, we obtain $n[2 \digamma(s)-$ $\digamma(e) \varphi(s)-\varphi(s) \digamma(e)]=0$ for all $s \in R$. Using torsion restriction on R, we obtain

$$
\begin{equation*}
2 \digamma(s)=\varphi(s) \digamma(e)+\digamma(e) \varphi(s), \forall s \in R . \tag{2.4}
\end{equation*}
$$

Substituting $r+k e$ for r into equation (2.3), we get:

$$
\begin{aligned}
3 \sum_{i=0}^{2 n}\binom{2 n}{i} \digamma\left(r^{2 n-i}(k e)^{i}\right)= & {\left[\sum_{i=0}^{n}\binom{n}{i} \digamma\left(r^{n-i}(k e)^{i}\right)\right] \varphi\left[\sum_{i=0}^{n}\binom{n}{i}\left(r^{n-i}(k e)^{i}\right)\right] } \\
& +\varphi\left[\sum_{i=0}^{n}\binom{n}{i}\left(r^{n-i}(k e)^{i}\right)\right] \digamma(e) \varphi\left[\sum_{i=0}^{n}\binom{n}{i}\left(r^{n-i}(k e)^{i}\right)\right] \\
& +\varphi\left[\sum_{i=0}^{n}\binom{n}{i}\left(r^{n-i}(k e)^{i}\right)\right]\left[\sum_{i=0}^{n}\binom{n}{i} \digamma\left(r^{n-i}(k e)^{i}\right)\right],
\end{aligned}
$$

$\forall r \in R, k \in \mathbb{Z}^{+}$. Reshuffling the terms of k^{i} for all $i=1,2,3, \ldots, 2 n-1$, we obtain

$$
\begin{aligned}
& k\left[3\binom{2 n}{1} \digamma\left(r^{2 n-1}\right)-\binom{n}{1} \digamma\left(r^{n}\right) \varphi\left(r^{n-1}\right)-\binom{n}{1} \digamma\left(r^{n-1}\right) \varphi\left(r^{n}\right)-\binom{n}{1} \varphi\left(r^{n}\right) \digamma(e) \varphi\left(r^{n-1}\right)\right. \\
& \left.-\binom{n}{1} \varphi(r) \digamma(e) \varphi\left(r^{n}\right)-\left(\begin{array}{c}
n \\
1 \\
1
\end{array}\right) \varphi\left(r^{n-1}\right) \digamma\left(r^{n}\right)-\binom{n}{1} \varphi\left(r^{n}\right) \digamma\left(r^{n-1}\right)\right]+\ldots+k^{2 n-2}\left[3\binom{2 n}{2 n-2} \digamma\left(r^{2}\right)\right. \\
& -\binom{n}{n-2} \digamma(r) \varphi(r)-\binom{n}{n-2} \digamma(e) \varphi\left(r^{2}\right)-\binom{n}{n-1}\binom{n}{n-1} \varphi(r) \digamma(e) \varphi(r)-\binom{n}{n-2} \varphi(r) \digamma(r) \\
& \left.-\binom{n}{n-2} \varphi\left(r^{2}\right) \digamma(e)\right]+k^{2 n-1}\left[3\binom{2 n}{2 n-1} \digamma(r)-\binom{n}{n-1} \digamma(r)-\binom{n}{n-1} \digamma(e) \varphi(r)\right. \\
& \left.-\binom{n}{n-1} \varphi(r) \digamma(e)-\binom{n}{n-1} \digamma(r)-\binom{n}{n-1} \digamma(e) \varphi(r)-\binom{n}{n-1} \varphi(r) \digamma(e)\right]=0
\end{aligned}
$$

Applying similar arguments, we have

$$
\begin{align*}
& 3\binom{2 n}{2 n-2} \digamma\left(r^{2}\right)-\binom{n}{n-2} \digamma(r) \varphi(r)-\binom{n}{n-2} \digamma(e) \varphi\left(r^{2}\right) \\
& -\binom{n}{n-1}\binom{n-1}{n-1} \varphi(r) \digamma(e) \varphi(r)-\binom{n}{n-2} \varphi(r) \digamma(r)-\binom{n}{n-2} \varphi\left(r^{2}\right) \digamma(e)=0, \forall r \in R \tag{2.5}
\end{align*}
$$

Replacing s by r and s by r^{2} in (2.4), we find the following two equations:

$$
\begin{equation*}
2 \digamma\left(r^{2}\right)=\digamma(e) \varphi\left(r^{2}\right)+\varphi\left(r^{2}\right) \digamma(e), \forall r \in R . \tag{2.6}
\end{equation*}
$$

Using (2.4), we get the following (2.7) and (2.8):

$$
\begin{equation*}
2 \varphi(r) \digamma(r)=\varphi(r) \digamma(e) \varphi(r)+\varphi\left(r^{2}\right) \digamma(e), \forall r \in R \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
2 \digamma(r) \varphi(r)=\varphi(r) \digamma(e) \varphi(r)+\digamma(e) \varphi\left(r^{2}\right), \forall r \in R \tag{2.8}
\end{equation*}
$$

Adding the above two equations and using (2.6), we find that

$$
\begin{equation*}
\varphi(r) \digamma(e) \varphi(r)=\varphi(r) \digamma(r)+\digamma(r) \varphi(r)-\digamma\left(r^{2}\right), \forall r \in R . \tag{2.9}
\end{equation*}
$$

Using (2.6) and (2.9) in (2.5) and torsion restriction on R, we get $2 \digamma\left(r^{2}\right)=$ $\varphi(r) \digamma(r)+\digamma(r) \varphi(r)$ for every $r \in R$. Therefore, by Lemma 1.1, we reach the desired conclusion.
Next, the following example shows that the above results are not insignificant:
Example 2.1. Define the mappings \digamma, φ from a ring $R \rightarrow R$ by $\digamma\left[\left(\begin{array}{cc}r & s \\ 0 & t\end{array}\right)\right]=$ $\left(\begin{array}{ll}0 & s \\ 0 & 0\end{array}\right), \varphi\left[\left(\begin{array}{ll}r & s \\ 0 & t\end{array}\right)\right]=\left(\begin{array}{ll}0 & 0 \\ 0 & t\end{array}\right)$, where $R=\left\{\left.\left(\begin{array}{ll}r & s \\ 0 & t\end{array}\right) \right\rvert\, r, s, t \in\right.$ $\left.2 \mathbb{Z}_{8}\right\}$. One can easily see that the ring R is not a 2-torsion free semiprime and \digamma satisfies the algebraic identity (2.1) but \digamma is not a centralizer. Consequently, the hypothesis of semiprime is crucial for Theorem 2.1.

Acknowledgment: The authors of the paper extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah for the support provided to the Post-Publishing Program 2.

References

[1] Emine Albas, On ϕ-centralizers of semiprime rings, Siberian Math. J., 48, no. 2, (2007), 191-196.
[2] Abu Zaid Ansari, Faiza Shujat, Additive mappings on semiprime rings functioning as centralizers, Aust. J. Math. Anal. Appl., 19, no. 2, (2022), Article 11, 9pp.
[3] Abu Zaid Ansari, Faiza Shujat, Semiprime rings with involution and centralizers, J. Appl. Math. Informatics, 40, no. 3, (2022), 709-717.
[4] Mohammad Nagy Daif, Mohammad Sayed Tammam, On θ-Centralizers of semiprime rings (II), St. Petersburg Math. J., 21, no. 1, (2010), 4352.
[5] Sigurdur Helgason, Multipliers of Banach algebras, Ann. Math., 64, (1956), 240-254.

