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Abstract

The objective of this research paper is to justify that an additive

mapping ̥ from a semiprime ring R to itself will be ϕ-centralizer

having a suitable torsion restriction on R if it satisfies certain algebraic

equations.

1 Introduction

Throughout this paper, R stands for an associative ring with unity e. A ring
R is called p-torsion free, where p is positive integer, if pr = 0 implies r = 0 for
all r ∈ R. A ring R is called prime if rRt = {0} entails either r = 0 or t = 0,
and is known as semiprime if rRr = {0} yields r = 0. Helgosen [5] introduced
the idea of centralizers on Banach algebras. A mapping ̥ : R → R is
called a right (left) centralizer if it is additive and satisfies ̥(rt) = r̥(t)
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(

̥(rt) = ̥(r)t
)

for all r, t ∈ R. In particular, it is called a Jordan right
(Jordan left) centralizer if r = t. If ̥ is both a Jordan right centralizer and
a Jordan left centralizer, then it is simply called a Jordan centralizer. Albas
[1] called ̥ : R → R is called a right (left) ϕ-centralizer if ̥(rt) = ϕ(r)̥(t)
(

̥(rt) = ̥(r)ϕ(t)
)

and it is additive, for every element r, t ∈ R and F

is known as a Jordan right (Jordan left) ϕ-centralizer if ̥(r2) = ϕ(r)̥(r)
(

̥(r2) = ̥(r)ϕ(r)
)

for all r ∈ R, where ϕ is an endomorphism defined
on R. The mapping ̥ is calleds a ϕ-centralizer, in case ̥ is both right
as well as left ϕ-centralizer. Every Jordan ϕ-centralizer is a ϕ-centralizer.
However, the converse is not generally true. The converse of this statement
is true under suitable torsion restriction on a semiprime ring [1]. For some
recent extensions of the above results, the reader is referred to [2, 3]. Based
on these findings, the authors of this work provide an extension of these
mathematical assertions. More precisely, ̥ : R → R will be a ϕ-centralizer,
if ̥ satisfies 3̥(rnsnrn) = ̥(rn)ϕ(snrn)+ϕ(rn)̥(sn)ϕ(rn)+ϕ(rnsn)̥(rn),
for all r in a suitably torsion restricted semiprime ring R. The subsequent
result is necessary to prove the fundamental theorem:

Lemma 1.1 ([4]). Assume that R is a semiprime ring with the 2-torsion
free condition and let ̥ : R → R be an additive mapping satisfying the
algebraic identity 2̥(r2) = ̥(r)ϕ(r) + ϕ(r)̥(r) for all r ∈ R, where ϕ is a
surjective endomorphism on R. Then ̥ will be a ϕ-centralizer on R.

2 Main result

Theorem 2.1. Every additive mapping T from a n!-torsion free semiprime
ring R to itself is a ϕ-centralizer if it satisfies the algebraic condition 3̥(rnsnrn) =
̥(rn)ϕ(snrn) + ϕ(rn)̥(sn)ϕ(rn) + ϕ(rnsn)̥(rn), ∀r, s ∈ R, where n ≥ 1 is
a fixed integer.

Proof. Since

3̥(rnsnrn) = ̥(rn)ϕ(snrn) + ϕ(rn)̥(sn)ϕ(rn) + ϕ(rnsn)̥(rn), (2.1)

∀r, s ∈ R then, in particular, choosing the identity e for r in (2.1), we find
that

2̥(sn) = ̥(e)ϕ(sn) + ϕ(sn)̥(e), ∀s ∈ R. (2.2)

On the other hand, in particular, choosing the identity e for s in (2.1), we
obtain

3̥(r2n) = ̥(rn)ϕ(rn) + ϕ(rn)̥(e)ϕ(rn) + ϕ(rn)̥(rn), ∀r ∈ R. (2.3)
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Next, replacing s by ks+ e in equation (2.2), we have

n
∑

i=0

(

n

i

)

kn−i[2̥(sn−i)− ϕ(sn−i)̥(e)−̥(e)ϕ(sn−i)] = 0 ∀s ∈ R, k ∈ Z+.

Putting k = 1, 2, 3..., n−1 one by one, we get a homogeneous system of n−1
linear equations with trivial solution. Hence all coefficients of ki are equal
to zero which yields that

(

n

i

)

kn−i[2̥(sn−i) − ϕ(sn−i)̥(e) − ̥(e)ϕ(sn−i)] =
0 for every s ∈ R. In particular, replacing i = n − 1, we obtain n[2̥(s) −
̥(e)ϕ(s) − ϕ(s)̥(e)] = 0 for all s ∈ R. Using torsion restriction on R, we
obtain

2̥(s) = ϕ(s)̥(e) +̥(e)ϕ(s), ∀s ∈ R. (2.4)

Substituting r + ke for r into equation (2.3), we get:

3
2n
∑

i=0

(

2n

i

)

̥(r2n−i(ke)i) = [
n
∑

i=0

(

n

i

)

̥(rn−i(ke)i)]ϕ[
n
∑

i=0

(

n

i

)

(rn−i(ke)i)]

+ϕ[
n
∑

i=0

(

n

i

)

(rn−i(ke)i)]̥(e)ϕ[
n
∑

i=0

(

n

i

)

(rn−i(ke)i)]

+ϕ[
n
∑

i=0

(

n

i

)

(rn−i(ke)i)][
n
∑

i=0

(

n

i

)

̥(rn−i(ke)i)],

∀r ∈ R, k ∈ Z+. Reshuffling the terms of ki for all i = 1, 2, 3, . . . , 2n− 1, we
obtain

k[3
(

2n

1

)

̥(r2n−1)−
(

n

1

)

̥(rn)ϕ(rn−1)−
(

n

1

)

̥(rn−1)ϕ(rn)−
(

n

1

)

ϕ(rn)̥(e)ϕ(rn−1)
−
(

n

1

)

ϕ(r)̥(e)ϕ(rn)−
(

n

1

)

ϕ(rn−1)̥(rn)−
(

n

1

)

ϕ(rn)̥(rn−1)] + . . .+ k2n−2[3
(

2n

2n−2

)

̥(r2)

−
(

n

n−2

)

̥(r)ϕ(r)−
(

n

n−2

)

̥(e)ϕ(r2)−
(

n

n−1

)(

n

n−1

)

ϕ(r)̥(e)ϕ(r)−
(

n

n−2

)

ϕ(r)̥(r)

−
(

n

n−2

)

ϕ(r2)̥(e)] + k2n−1[3
(

2n

2n−1

)

̥(r)−
(

n

n−1

)

̥(r)−
(

n

n−1

)

̥(e)ϕ(r)

−
(

n

n−1

)

ϕ(r)̥(e)−
(

n

n−1

)

̥(r)−
(

n

n−1

)

̥(e)ϕ(r)−
(

n

n−1

)

ϕ(r)̥(e)] = 0

Applying similar arguments, we have

3
(

2n

2n−2

)

̥(r2)−
(

n

n−2

)

̥(r)ϕ(r)−
(

n

n−2

)

̥(e)ϕ(r2)

−
(

n

n−1

)(

n

n−1

)

ϕ(r)̥(e)ϕ(r)−
(

n

n−2

)

ϕ(r)̥(r)−
(

n

n−2

)

ϕ(r2)̥(e) = 0, ∀r ∈ R

(2.5)
Replacing s by r and s by r2 in (2.4), we find the following two equations:

2̥(r2) = ̥(e)ϕ(r2) + ϕ(r2)̥(e), ∀r ∈ R. (2.6)

Using (2.4), we get the following (2.7) and (2.8):

2ϕ(r)̥(r) = ϕ(r)̥(e)ϕ(r) + ϕ(r2)̥(e), ∀r ∈ R. (2.7)
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2̥(r)ϕ(r) = ϕ(r)̥(e)ϕ(r) +̥(e)ϕ(r2), ∀r ∈ R. (2.8)

Adding the above two equations and using (2.6), we find that

ϕ(r)̥(e)ϕ(r) = ϕ(r)̥(r) +̥(r)ϕ(r)−̥(r2), ∀r ∈ R. (2.9)

Using (2.6) and (2.9) in (2.5) and torsion restriction on R, we get 2̥(r2) =
ϕ(r)̥(r) + ̥(r)ϕ(r) for every r ∈ R. Therefore, by Lemma 1.1, we reach
the desired conclusion.
Next, the following example shows that the above results are not insignificant:

Example 2.1. Define the mappings̥, ϕ from a ring R → R by ̥

[(

r s

0 t

)]

=
(

0 s

0 0

)

, ϕ

[(

r s

0 t

)]

=

(

0 0
0 t

)

, where R =
{

(

r s

0 t

)

| r, s, t ∈

2Z8

}

. One can easily see that the ring R is not a 2-torsion free semiprime

and ̥ satisfies the algebraic identity (2.1) but ̥ is not a centralizer. Con-
sequently, the hypothesis of semiprime is crucial for Theorem 2.1.
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