International Journal of Mathematics and Computer Science, **19**(2024), no. 2, 475–479

Strongly $\theta(\Lambda, p)$ -continuous functions

Montri Thongmoon, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: montri.t@msu.ac.th, chawalit.b@msu.ac.th

(Received July 7, 2023, Accepted October 29, 2023, Published November 10, 2023)

Abstract

In this paper, we introduce a new class of functions called strongly $\theta(\Lambda, p)$ -continuous functions. Moreover, we investigate several characterizations and some properties concerning strongly $\theta(\Lambda, p)$ -continuous functions.

1 Introduction

In 1941, Fomin [3] introduced the notion of θ -continuous functions. In 1980, Noiri [12] introduced the notion of strongly θ -continuous functions. Long et al. [7] studied some properties of strongly θ -continuous functions. In 1998, Jafari and Noiri [6] introduced and studied the notion of strongly θ -semicontinuous functions. Moreover, Jafari and Noiri [5] studied the notion of strongly sober θ -continuous functions. In 2001, Noiri [11] introduced the notion of θ -precontinuous functions. In 2002, Noiri and Popa [10] introduced and investigated the notion of strongly θ - β -continuous functions. In 2005, Noiri and Popa [9] defined a new notion of strongly θ -M-continuous functions as

Key words and phrases: (Λ, p) -open set, strongly $\theta(\Lambda, p)$ -continuous function.

The corresponding author is Montri Thongmoon. AMS (MOS) Subject Classifications: 54A05, 54C08. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net functions from a set satisfying some minimal conditions into a set satisfying some minimal conditions. Several characterizations and some properties of strongly θ -*M*-continuous functions were investigated in [9]. Viriyapong and Boonpok [13] studied some properties of (Λ, sp) -continuous functions. Quite recently, Boonpok and Viriyapong [1] introduced and studied the notions of (Λ, p) -open sets and (Λ, p) -closed sets in topological spaces. In this paper, we introduce the notion of strongly $\theta(\Lambda, p)$ -continuous functions. Moreover, we investigate several characterizations of strongly $\theta(\Lambda, p)$ -continuous functions.

2 Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X, τ) , Cl(A)and Int(A), represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be preopen [8] if $A \subseteq Int(Cl(A))$. The complement of a preopen set is called *preclosed*. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [4] is defined as follows: $\Lambda_p(A) = \bigcap \{ U \mid A \subseteq U, U \in PO(X, \tau) \}$. A subset A of a topological space (X, τ) is called a Λ_p -set [1] (pre- Λ -set [4]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [1] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) closed) sets in a topological space (X, τ) is denoted by $\Lambda_p O(X, \tau)$ (resp. $\Lambda_p C(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a (Λ, p) -cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [1] of A and is denoted by $A^{(\Lambda, p)}$. The union of all (Λ, p) open sets of X contained in A is called the (Λ, p) -interior [1] of A and is denoted by $A_{(\Lambda,p)}$. The $\theta(\Lambda,p)$ -closure [1] of A, $A^{\theta(\Lambda,p)}$, is defined as follows: $A^{\theta(\Lambda,p)} = \{ x \in X \mid A \cap U^{(\Lambda,p)} \neq \emptyset \text{ for each } (\Lambda,p) \text{-open set } U \text{ containing } x \}.$ A subset A of a topological space (X, τ) is called $\theta(\Lambda, p)$ -closed [1] if A = $A^{\theta(\Lambda,p)}$. The complement of a $\theta(\Lambda,p)$ -closed set is said to be $\theta(\Lambda,p)$ -open. A point $x \in X$ is called a $\theta(\Lambda, p)$ -interior point of A if $x \in U \subseteq U^{(\Lambda, p)} \subseteq A$ for some $U \in \Lambda_p O(X, \tau)$. The set of all $\theta(\Lambda, p)$ -interior points of A is called the $\theta(\Lambda, p)$ -interior of A and is denoted by $A_{\theta(\Lambda, p)}$.

3 Strongly $\theta(\Lambda, p)$ -continuous functions

In this section, we introduce the notion of strongly $\theta(\Lambda, p)$ -continuous functions. Moreover, some characterizations of strongly $\theta(\Lambda, p)$ -continuous functions are investigated.

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be strongly $\theta(\Lambda, p)$ continuous at $x \in X$ if for each (Λ, p) -open set V of Y containing f(x), there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda, p)}) \subseteq V$. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be strongly $\theta(\Lambda, p)$ -continuous if f has this property at each point $x \in X$.

Theorem 3.2. A function $f : (X, \tau) \to (Y, \sigma)$ is strongly $\theta(\Lambda, p)$ -continuous at $x \in X$ if and only if for each (Λ, p) -open set V of Y containing f(x), $x \in [f^{-1}(V)]_{\theta(\Lambda,p)}$.

Proof. Let $x \in X$ and f be strongly $\theta(\Lambda, p)$ -continuous at x. Let V be any (Λ, p) -open set V of Y containing f(x). Then, there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda,p)}) \subseteq V$. Thus, $x \in U \subseteq U^{(\Lambda,p)} \subseteq f^{-1}(V)$ and hence $x \in [f^{-1}(V)]_{\theta(\Lambda,p)}$.

Conversely, let V be any (Λ, p) -open set V of Y containing f(x). Then, by the hypothesis, $x \in [f^{-1}(V)]_{\theta(\Lambda,p)}$. There exists a (Λ, p) -open set U of X such that $x \in U \subseteq U^{(\Lambda,p)} \subseteq f^{-1}(V)$; hence $f(U^{(\Lambda,p)}) \subseteq V$. This shows that f is strongly $\theta(\Lambda, p)$ -continuous at x.

Lemma 3.3. For subsets A and B of a topological space (X, τ) , the following properties hold:

- (1) $X A^{\theta(\Lambda,p)} = [X A]_{\theta(\Lambda,p)}$ and $X A_{\theta(\Lambda,p)} = [X A]^{\theta(\Lambda,p)}$.
- (2) A is $\theta(\Lambda, p)$ -open if and only if $A = A_{\theta(\Lambda, p)}$.
- (3) $A \subseteq A^{(\Lambda,p)} \subseteq A^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq A_{(\Lambda,p)} \subseteq A$.
- (4) If $A \subseteq B$, then $A^{\theta(\Lambda,p)} \subseteq B^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq B_{\theta(\Lambda,p)}$.
- (5) If A is (Λ, p) -open, then $A^{(\Lambda, p)} = A^{\theta(\Lambda, p)}$.

Theorem 3.4. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is strongly $\theta(\Lambda, p)$ -continuous;
- (2) $f^{-1}(V)$ is $\theta(\Lambda, p)$ -open in X for every (Λ, p) -open set V of Y;

(3) f⁻¹(K) is θ(Λ, p)-closed in X for every (Λ, p)-closed set K of Y;
(4) f(A^{θ(Λ,p)}) ⊆ [f(A)]^(Λ,p) for every subset A of X;
(5) [f⁻¹(B)]^{θ(Λ,p)} ⊆ f⁻¹(B^(Λ,p)) for every subset B of Y.
Proof (1) ⇒ (2): Let V be any (Λ p)-open set of Y and x ∈ f⁻¹(A)

Proof. (1) \Rightarrow (2): Let V be any (Λ, p) -open set of Y and $x \in f^{-1}(V)$. Then, $f(x) \in V$. Since f is strongly $\theta(\Lambda, p)$ -continuous at x, by Theorem 3.2, $x \in [f^{-1}(V)]_{\theta(\Lambda,p)}$. Thus, $f^{-1}(V) \subseteq [f^{-1}(V)]_{\theta(\Lambda,p)}$ and hence $f^{-1}(V) = [f^{-1}(V)]_{\theta(\Lambda,p)}$. By Lemma 3.3, $f^{-1}(V)$ is $\theta(\Lambda, p)$ -open in X.

(2) \Rightarrow (3): Let K be any (Λ, p) -closed set of Y. Then, Y - K is (Λ, p) open. By Lemma 3.3, $X - f^{-1}(K) = f^{-1}(Y - K) = [f^{-1}(Y - K)]_{\theta(\Lambda, p)} = X - [f^{-1}(K)]^{\theta(\Lambda, p)}$. Thus, $f^{-1}(K) = [f^{-1}(K)]^{\theta(\Lambda, p)}$ and hence $f^{-1}(K)$ is $\theta(\Lambda, p)$ -closed in X.

(3) \Rightarrow (1): Let $x \in X$ and V be any (Λ, p) -open set of Y containing f(x). By (3), $f^{-1}(Y - V)$ is $\theta(\Lambda, p)$ -closed and $f^{-1}(V)$ is $\theta(\Lambda, p)$ -open. By Lemma 3.3, $f^{-1}(V) = [f^{-1}(V)]_{\theta(\Lambda,p)}$. Since $x \in [f^{-1}(V)]_{\theta(\Lambda,p)}$, there exists a (Λ, p) -open set U of X such that $x \in U \subseteq U^{(\Lambda,p)} \subseteq f^{-1}(V)$. Thus, $f(U^{(\Lambda,p)}) \subseteq V$. This shows that f is strongly $\theta(\Lambda, p)$ -continuous.

(1) \Rightarrow (4): Let A be any subset of X. Suppose that $x \in A^{\theta(\Lambda,p)}$. Let V be any (Λ, p) -open set of Y containing f(x). Since f is strongly $\theta(\Lambda, p)$ -continuous, there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda,p)}) \subseteq V$. Since $x \in A^{\theta(\Lambda,p)}$, we have $U^{(\Lambda,p)} \cap A \neq \emptyset$. It follows that $\emptyset \neq f(U^{(\Lambda,p)}) \cap f(A) \subseteq V \cap f(A)$. Thus, $f(x) \in [f(A)]^{(\Lambda,p)}$.

 $(4) \Rightarrow (5)$: Let *B* be any subset of *Y*. Then, we have $f([f^{-1}(B)]^{\theta(\Lambda,p)}) \subseteq [f(f^{-1}(B)]^{(\Lambda,p)} \subseteq B^{(\Lambda,p)}$ and hence $[f^{-1}(B)]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{(\Lambda,p)})$.

(5) \Rightarrow (1): Let $x \in X$ and V be any (Λ, p) -open set of Y containing f(x). Since $V \cap (Y - V) = \emptyset$, by Lemma 3.3 $f(x) \notin [Y - V]^{(\Lambda, p)}$ and hence $x \notin f^{-1}([Y - V]^{(\Lambda, p)})$. By (5), $x \notin [Y - V]^{\theta(\Lambda, p)} = X - [f^{-1}(V)]_{\theta(\Lambda, p)}$ and hence $x \in [f^{-1}(V)]_{\theta(\Lambda, p)}$. There exists a (Λ, p) -open set U of X containing x such that $U^{(\Lambda, p)} \subseteq f^{-1}(V)$; hence $f(U^{(\Lambda, p)}) \subseteq V$. This shows that f is strongly $\theta(\Lambda, p)$ -continuous.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15, no. 2, (2022), 415– 436.
- [2] C. Boonpok, M-continuous functions on biminimal structure spaces, Far East J. Math. Sci., 43, no. 1, (2010), 41–58.
- [3] S. Fomin, Extensions of topological spaces, Dokl. Akad. Nauk. SSSR, 32, (1941), 114–116.
- [4] M. Ganster, S. Jafari, T. Noiri, On pre-Λ-sets and pre-V-sets, Acta Math. Hungar., 95, (2002), 337–343.
- [5] S. Jafari, T. Noiri, Strongly sober θ-continuous functions, J. Pure Math., 16, (1999), 9–17.
- [6] S. Jafari, T. Noiri, Strongly θ-semi-continuous functions, Indian J. Pure Appl. Math., 29, (1998), 1195–1201.
- [7] P. E. Long, L. L. Herrington, Strongly θ-continuous functions, J. Korean Math. Soc., 18, (1981), 21–28.
- [8] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, (1982), 47–53.
- [9] T. Noiri, V. Popa, A unified theory for strongly θ-continuity for functions, Acta Math. Hungar., 106, no. 3, (2005), 167–186.
- [10] T. Noiri, V. Popa, Strongly θ-β-precontinuous functions, J. Pure Math., 19, (2002), 31–39.
- [11] T. Noiri, Strongly θ -precontinuous functions, Acta. Math. Hungar., **90**, (2001), 307–316.
- [12] T. Noiri, On δ -continuous functions, J. Korean Math. Soc., 16, (1980), 161–166.
- [13] C. Viriyapong, C. Boonpok, (Λ, sp) -continuous functions, WSEAS Trans. Math., **21**, (2022), 380–385.