International Journal of Mathematics and Computer Science, **19**(2024), no. 2, 491–495

$\theta(\Lambda,p)\text{-continuity for functions}$

Prapart Pue-on, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics, Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: prapart.p@msu.ac.th, chawalit.b@msu.ac.th

(Received July 8, 2023, Accepted November 2, 2023, Published November 10, 2023)

Abstract

This paper is concerned with the notion of $\theta(\Lambda, p)$ -continuous functions. Moreover, some characterizations and several properties concerning $\theta(\Lambda, p)$ -continuous functions are investigated.

1 Introduction

The concept of θ -continuous functions was first introduced by Fomin [6]. Noiri [13] studied some properties of θ -continuous functions. Arya and Bhamini [1] introduced the notion of θ -semi-continuous functions. Noiri [12] investigated several characterizations of θ -semi-continuous functions. Moreover, Jafari and Noiri [8] obtained some properties of θ -semi-continuous functions. Di Maio and Noiri [4] introduced the concept of quasi-irresolute functions. It is shown in [3] that a function is quasi-irresolute if and only if it is θ -irresolute in the sense of Dube et al. [5]. Noiri [11] introduced and investigated the notion of θ -preirresolute functions. The notion of weakly β irresolute functions has been defined and studied in [10]. These four classes of functions have properties similar to the class of θ -continuous functions.

Key words and phrases: (Λ, p) -open set, $\theta(\Lambda, p)$ -continuous function. The corresponding author is Prapart Pue-on. AMS (MOS) Subject Classifications: 54A05, 54C08.

ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Viriyapong and Boonpok [15] investigated some characterizations of (Λ, sp) continuous functions. In [2], the present authors introduced and studied the notions of (Λ, p) -open sets and (Λ, p) -closed sets. In this paper, we introduce the concept of $\theta(\Lambda, p)$ -continuous functions. Moreover, some characterizations of $\theta(\Lambda, p)$ -continuous functions are investigated.

2 Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X, τ) , Cl(A)and Int(A), represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be preopen [9] if $A \subset Int(Cl(A))$. The complement of a preopen set is called *preclosed*. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [7] is defined as follows: $\Lambda_p(A) = \cap \{ U \mid A \subseteq U, U \in PO(X, \tau) \}$. A subset A of a topological space (X, τ) is called a Λ_p -set [2] (pre- Λ -set [7]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [2] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) closed) sets in a topological space (X, τ) is denoted by $\Lambda_p O(X, \tau)$ (resp. $\Lambda_p C(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a (Λ, p) -cluster point [2] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [2] of A and is denoted by $A^{(\Lambda, p)}$. The union of all (Λ, p) -open sets of X contained in A is called the (Λ, p) -interior [2] of A and is denoted by $A_{(\Lambda,p)}$. The $\theta(\Lambda,p)$ -closure [2] of $A, A^{\theta(\Lambda,p)}$, is defined as follows: $A^{\theta(\Lambda,p)} =$ $\{x \in X \mid A \cap U^{(\Lambda,p)} \neq \emptyset \text{ for each } (\Lambda,p) \text{-open set } U \text{ containing } x\}.$ A subset A of a topological space (X, τ) is called $\theta(\Lambda, p)$ -closed [2] if $A = A^{\theta(\Lambda, p)}$. The complement of a $\theta(\Lambda, p)$ -closed set is said to be $\theta(\Lambda, p)$ -open. A point $x \in X$ is called a $\theta(\Lambda, p)$ -interior point [14] of A if $x \in U \subseteq U^{(\Lambda, p)} \subseteq A$ for some $U \in \Lambda_p O(X, \tau)$. The set of all $\theta(\Lambda, p)$ -interior points of A is called the $\theta(\Lambda, p)$ -interior [14] of A and is denoted by $A_{\theta(\Lambda, p)}$.

3 $\theta(\Lambda, p)$ -continuous functions

We begin this section by introducing the concept of $\theta(\Lambda, p)$ -continuous functions.

 $\theta(\Lambda, p)$ -continuity for functions

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $\theta(\Lambda, p)$ -continuous at $x \in X$ if for each (Λ, p) -open set V of Y containing f(x), there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda, p)}) \subseteq V^{(\Lambda, p)}$. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be $\theta(\Lambda, p)$ -continuous if f has this property at each point $x \in X$.

Theorem 3.2. A function $f : (X, \tau) \to (Y, \sigma)$ is $\theta(\Lambda, p)$ -continuous at $x \in X$ if and only if $x \in [f^{-1}(V^{(\Lambda,p)})]_{\theta(\Lambda,p)}$ for each (Λ, p) -open set V of Y containing f(x).

Proof. Let $x \in X$ and f be $\theta(\Lambda, p)$ -continuous at x. Let V be any (Λ, p) open set V of Y containing f(x). Then, there exists a (Λ, p) -open set Uof X containing x such that $f(U^{(\Lambda,p)}) \subseteq V^{(\Lambda,p)}$. Thus, $x \in U \subseteq U^{(\Lambda,p)} \subseteq$ $f^{-1}(V^{(\Lambda,p)})$ and hence $x \in [f^{-1}(V^{(\Lambda,p)})]_{\theta(\Lambda,p)}$.

Conversely, let V be any (Λ, p) -open set V of Y containing f(x). Then, by the hypothesis, $x \in [f^{-1}(V^{(\Lambda,p)})]_{\theta(\Lambda,p)}$. There exists a (Λ, p) -open set U of X such that $x \in U \subseteq U^{(\Lambda,p)} \subseteq f^{-1}(V^{(\Lambda,p)})$; hence $f(U^{(\Lambda,p)}) \subseteq V^{(\Lambda,p)}$. This shows that f is $\theta(\Lambda, p)$ -continuous at x.

Theorem 3.3. A function $f : (X, \tau) \to (Y, \sigma)$ is $\theta(\Lambda, p)$ -continuous if and only if $f^{-1}(V) \subseteq [f^{-1}(V^{(\Lambda, p)})]_{\theta(\Lambda, p)}$ for each (Λ, p) -open set V of Y.

Proof. Let V be any (Λ, p) -open set V of Y and $x \in f^{-1}(V)$. Then, $f(x) \in V$. Since f is $\theta(\Lambda, p)$ -continuous at x, by Theorem 3.2, $x \in [f^{-1}(V^{(\Lambda, p)})]_{\theta(\Lambda, p)}$ and hence $f^{-1}(V) \subseteq [f^{-1}(V^{(\Lambda, p)})]_{\theta(\Lambda, p)}$.

Conversely, let $x \in X$ and V be any (Λ, p) -open set V of Y containing f(x). Then, $x \in f^{-1}(V) \subseteq [f^{-1}(V^{(\Lambda,p)})]_{\theta(\Lambda,p)}$ and hence $x \in [f^{-1}(V^{(\Lambda,p)})]_{\theta(\Lambda,p)}$. By Theorem 3.2, f is $\theta(\Lambda, p)$ -continuous.

Theorem 3.4. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is $\theta(\Lambda, p)$ -continuous;
- (2) $f(A^{\theta(\Lambda,p)}) \subseteq [f(A)]^{\theta(\Lambda,p)}$ for every subset A of X;
- (3) $[f^{-1}(B)]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{\theta(\Lambda,p)})$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let A be any subset of X. Suppose that $x \in A^{\theta(\Lambda,p)}$. Let V be any (Λ, p) -open set of Y containing f(x). Since f is $\theta(\Lambda, p)$ -continuous, there exists a (Λ, p) -open set U of X containing x such that $f(U^{(\Lambda,p)}) \subseteq V^{(\Lambda,p)}$. Since $x \in A^{\theta(\Lambda,p)}, U^{(\Lambda,p)} \cap A \neq \emptyset$. It follows that $\emptyset \neq f(U^{(\Lambda,p)}) \cap f(A) \subseteq V^{(\Lambda,p)} \cap f(A)$. Thus, $f(x) \in [f(A)]^{\theta(\Lambda,p)}$. $(2) \Rightarrow (3)$: Let *B* be any subset of *Y*. Then, we have $f([f^{-1}(B)]^{\theta(\Lambda,p)}) \subseteq [f(f^{-1}(B)]^{\theta(\Lambda,p)} \subseteq B^{\theta(\Lambda,p)}$ and hence $[f^{-1}(B)]^{\theta(\Lambda,p)} \subseteq f^{-1}(B^{\theta(\Lambda,p)})$.

 $\begin{array}{ll} (3) \Rightarrow (1): \text{ Let } x \in X \text{ and } V \text{ be any } (\Lambda, p) \text{-open set of } Y \text{ containing } f(x).\\ \text{Since } V^{(\Lambda,p)} \cap (Y - V^{(\Lambda,p)}) = \emptyset, \text{ clearly } f(x) \notin [Y - V^{(\Lambda,p)}]^{\theta(\Lambda,p)} \text{ and hence } x \notin f^{-1}([Y - V^{(\Lambda,p)}]^{\theta(\Lambda,p)}). \text{ By } (3), x \notin [f^{-1}(Y - V^{(\Lambda,p)})]^{\theta(\Lambda,p)}. \text{ There exists a } (\Lambda, p) \text{-open set } U \text{ of } X \text{ containing } x \text{ such that } U^{(\Lambda,p)} \cap f^{-1}(Y - V^{(\Lambda,p)}) = \emptyset; \text{ hence } f(U^{(\Lambda,p)}) \cap (Y - V^{(\Lambda,p)}) = \emptyset. \text{ Thus, } f(U^{(\Lambda,p)}) \subseteq V^{(\Lambda,p)}. \text{ This shows that } f \text{ is } \theta(\Lambda, p) \text{-continuous.} \end{array}$

Let A be a subset of a topological space (X, τ) . The $\theta(\Lambda, p)$ -frontier of $A, \theta(\Lambda, p)Fr(A)$, is defined by $\theta(\Lambda, p)Fr(A) = A^{\theta(\Lambda, p)} \cap [X - A]^{\theta(\Lambda, p)}$.

Theorem 3.5. The set of all points $x \in X$ at which a function $f : (X, \tau) \to (Y, \sigma)$ is not $\theta(\Lambda, p)$ -continuous is identical with the union of the $\theta(\Lambda, p)$ -frontier of the inverse images of the (Λ, p) -closures of (Λ, p) -open sets containing f(x).

Proof. Suppose that f is not $\theta(\Lambda, p)$ -continuous at $x \in X$. There exists a (Λ, p) -open set V of Y containing f(x) such that $f(U^{(\Lambda,p)})$ is not contained in $V^{(\Lambda,p)}$ for every (Λ, p) -open set U of X containing x. Then, we have $U^{(\Lambda,p)} \cap (X - f^{-1}(V^{(\Lambda,p)})) \neq \emptyset$ for every (Λ, p) -open set U containing x and hence $x \in [X - f^{-1}(V^{(\Lambda,p)})]^{\theta(\Lambda,p)}$. On the other hand, we have $x \in f^{-1}(V) \subseteq [f^{-1}(V^{(\Lambda,p)})]^{\theta(\Lambda,p)}$ and hence $x \in \theta(\Lambda, p)Fr(f^{-1}(V^{(\Lambda,p)}))$.

Conversely, suppose that f is $\theta(\Lambda, p)$ -continuous at $x \in X$. Let V be any (Λ, p) -open set of Y containing f(x). By Theorem 3.3, $x \in f^{-1}(V) \subseteq$ $[f^{-1}(V^{(\Lambda,p)})]_{\theta(\Lambda,p)}$. Thus, $x \notin \theta(\Lambda, p)Fr(f^{-1}(V^{(\Lambda,p)}))$ for each (Λ, p) -open set V containing f(x). This complete the proof.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- S. P. Arya, M. P. Bhamini, Some weaker forms of semi-continuous functions, Ganita, 33, (1982), 124–134.
- [2] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15, no. 2, (2022), 415– 436.

494

- [3] F. Cammaroto, T. Noiri, Almost irresolute functions, Indian J. Pure Appl. Math., 20, (1989), 472–482.
- [4] G. Di Maio, T. Noiri, Weak and strong forms of irresolute functions, Suppl. Rend. Circ. Mat. Palermo, 2, 18, (1988), 255–273.
- [5] K. K. Dube, Gyu Ihn Chae, O. S. Panwar, On mappings with strongly semi-closed graphs, Ulsan Inst. Tech. Rep., 15, (1984), 373–379.
- [6] S. Fomin, Extensions of topological spaces, Dokl. Akad. Nauk. SSSR, 32, (1941), 114–116.
- [7] M. Ganster, S. Jafari, T. Noiri, On pre-Λ-sets and pre-V-sets. Acta Math. Hungar., 95, (2002), 337–343.
- [8] S. Jafari, T. Noiri, Properties of θ-semi-continuous functions, J. Inst. Math. Comput. Sci. Math. Ser., 13, (2000), 123–128.
- [9] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, (1982), 47–53.
- [10] T. Noiri, Weak and strong forms of β -irresolute functions, Acta Math. Hungar., **99**, (2003), 305–318.
- [11] T. Noiri, On θ -preirresolute functions, Acta Math. Hungar., **95**, (2002), 287–298.
- [12] T. Noiri, On θ-semi-continuous functions, Indian J. Pure Appl. Math., 21, (1990), 410–415.
- [13] T. Noiri, Properties of θ-continuous functions, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fiz. Mat. Natur. Ser., (8), 58, (1975), 887–891.
- [14] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -continuous functions, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 475–479.
- [15] C. Viriyapong, C. Boonpok, (Λ, sp) -continuous functions, WSEAS Trans. Math., **21**, (2022), 380–385.