
International Journal of Mathematics and
Computer Science, 19(2024), no. 2, 279–288

b b

M
CS

A Product of Tree Languages

Julaluk Boonsol, Pongsakorn Kitpratyakul,
Thawhat Changphas, Bundit Pibaljommee

Department of Mathematics
Faculty of Science

Khon Kaen University
Khon Kaen 40002, Thailand

email: julaluk.bs@kkumail.com, pongsakorn.k@kkumail.com,
thacha@kku.ac.th, banpib@kku.ac.th

(Received August 1, 2023, Accepted September 1, 2023,
Published November 10, 2023)

Abstract

Let Wτ (X) be the set of all terms of type τ . Any element of
the power set P (Wτ (X)) is called a tree language. In this paper,
we define a new binary associative operation ·ij on P (Wτ (X)) and
so a new semigroup is obtained. We study the algebraic structures
of such a semigroup including idempotent elements, regular elements,
and Green’s relations.

1 Introduction

Let τ := (ni)i∈I be a type with ni-ary operation symbols fi. For an integer
n ≥ 1, let Xn := {x1, . . . , xn} be the set of variables x1, . . . , xn and X :=
{x1, x2, . . .}. The n-ary terms [3] of type τ are defined as follows:

(i) Every variable xj ∈ Xn is an n-ary term for j = 1, ..., n.

(ii) If t1, . . . , tni
are n-ary terms and fi is an ni-ary operation symbol, then

fi(t1, . . . , tni
) is an n-ary term.
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We let Wτ (Xn) denote the set of all n-ary terms of type τ which is the
smallest set containing all variables in Xn and closed under finite application
of (ii). For a countably infinite set X = {x1, x2, ...},Wτ (X) denotes the set

of all terms of type τ , where Wτ (X) :=
∞⋃

n=1

Wτ (Xn) ( [4]).

Sets of terms of type τ are called tree languages. The tree language prod-
uct is an important operation defined on sets of tree languages which maps
recognizable tree languages to recognizable ones. This tree language prod-
uct can be described by the superposition of sets of terms. In the theory of
tree languages, the product of languages is called the z-product [4]. In [2],
Denecke and Sarasit studied properties of the arising semigroups and their
subsemigroups. They were especially interested in idempotent and regular
elements, Green’s relations L and R. Based on the superposition operation,
we define a new binary associative operation on the set of all tree languages.
The purpose of this work is to investigate some important properties of the
semigroup of the set of all tree languages of type τ together with a new
product of such tree languages.

We denote by Wτ (X) the set of all terms of type τ = (ni)i∈I . Any element
of the power set P (Wτ(X)) is called a tree language.

In [1], on the set P (Wτ (X)), an (n+ 1)-ary superposition operation

Ŝn
g : P (Wτ (X))n+1 → P (Wτ (X))

is inductively defined by the following steps:

Let n ∈ N+ (:= N \ {0}) be a natural number and let B,B1, ..., Bn ∈
P (Wτ(X)) such that B,B1, ..., Bn are non-empty.

(1) If B = {xi} for 1 ≤ i ≤ n, then Ŝn
g ({xi}, B1, ..., Bn) := Bi, and if

B = {xi} for n < i, then Ŝn
g ({xi}, B1, ..., Bn) := {xi}.

(2) If B = {fi(t1, ..., tni
)} and if we assume that Ŝn

g ({tj}, B1, ..., Bn) for

1 ≤ j ≤ ni are already defined, then Ŝn
g ({fi(t1, ..., tni

)}, B1, ..., Bn) :=

{fi(r1, ..., rni
) | rj ∈ Ŝn

g ({tj}, B1, ..., Bn), 1 ≤ j ≤ ni}.

(3) If B is an arbitrary non-empty subset of Wτ (X), then we define

Ŝn
g (B,B1, ..., Bn) :=

⋃

b∈B

Ŝn
g ({b}, B1, ..., Bn).

If one of B,B1, ..., Bn is empty, then we define Ŝn
g (B,B1, ..., Bn) = ∅.
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The operation Ŝn
g satisfies the following equation (Cg1), which is called

the superassociative law :

S̃n(T, S̃n(F1, T1, ..., Tn), ..., S̃
n(Fn, T1, ..., Tn)) ≈ S̃n(S̃n(T, F1, ..., Fn), T1, ..., Tn)

Here S̃n is an operation symbol corresponding to the operation Ŝn
g .

Let i ≤ n. Denecke and Sarasit [2] defined a binary operation ·xi
by

B1 ·xi
B2 := Ŝn

g (B1, {x1}, ..., {xi−1}, B2, {xi+1}, ..., {xn})

for all B1, B2 ⊆ Wτ (X). Because of (Cg1), the operation ·xi
is associative

and so (P (Wτ (X)); ·xi
) is a semigroup. Since A ·xi

{xi} = A = {xi} ·xi
A for

all A ∈ P (Wτ (X)), the set {xi} is an identity element with respect to the
multiplication ·xi

and the algebra (P (Wτ(X)); ·xi
, {xi}) is a monoid.

2 The semigroup (P (Wτ(X)); ·ij)

Using the operation Ŝn
g : P (Wτ(X))n+1 → P (Wτ(X)) for every n ≥ 1 and

1 ≤ i ≤ j ≤ n, we define a binary operation ·ij as follows:

A ·ij B := Ŝn
g (A, {x1}, ..., {xi−1}, B, {xi+1}, ..., {xj−1}, B, {xj+1}, ..., {xn})

for all A,B ∈ P (Wτ (X)).

Example 2.1. Let X = {x1, x2, x3} and τ = (3, 1) with a ternary operation
f and a unary operation g. Let i = 1, j = 3, A = {g(f(x1, x2, x3))}, and
B = {g(x2), f(x2, x3, x1)}. Then

A ·13 B = Ŝ3

g (A,B, {x2}, B)

= {g(f(g(x2), x2, g(x2))), g(f(g(x2), x2, f(x2, x3, x1))),

g(f(f(x2, x3, x1), x2, g(x2))), g(f(f(x2, x3, x1), x2, f(x2, x3, x1)))}.

Since Ŝn
g satisfies (Cg1), ·ij is associative and so (P (Wτ(X)); ·ij) is a

semigroup. Next, we show that the semigroup (P (Wτ (X)); ·ij) does not have
an identity. If B is an identity, then B is a variable. Let B ∈ P (Wτ(X)).
Clearly, if B = {xs}, s 6= i, s 6= j, then B is not an identity. If B = {xi} and
there is A = {xj} for i 6= j, then A ·ij B = {xi} 6= {xj} = A. If B = {xj}
and there is A = {xi} for i 6= j, then A ·ij B = {xj} 6= {xi} = A. Therefore,
(P (Wτ (X)); ·ij) does not have an identity.

Let V ar(A) be the set of all variables occurring in some terms of A. The
following lemmas show the properties of ·ij.
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Lemma 2.2. Let A,B ∈ P (Wτ (X)) and let 1 ≤ i ≤ j ≤ n. If xi, xj /∈
V ar(A) and B 6= ∅, then A ·ij B = A.

Proof. Assume that xi, xj /∈ V ar(A) and B 6= ∅. If A = ∅, then A ·ij B = A.
Next, assume that A 6= ∅. We show that for all terms t ∈ Wτ (X) such that
xi, xj /∈ V ar({t}), we have {t} ·ij B = {t}. We will proceed by induction on
the complexity of the term t. If t = xs for some 1 ≤ s ≤ n and s 6= i, s 6= j,
then {xs} ·ij B = {xs}. If t = fi(t1, ..., tni

), then xi, xj /∈ V ar({tk}) for all
1 ≤ k ≤ ni. We assume that {tk} ·ij B = {tk} for all 1 ≤ k ≤ ni. Then

{t} ·ij B = Ŝn
g ({fi(t1, . . . , tni

)}, {x1}, . . . , {xi−1}, B, {xi+1}, . . . , {xj−1}, B,

{xj+1}, . . . , {xn})

= {fi(r1, . . . , rni
) | rk ∈ Ŝn

g ({tk}, {x1}, . . . , {xi−1}, B, {xi+1}, . . . ,

{xj−1}, B, {xj+1}, . . . , {xn}), 1 ≤ k ≤ ni}

= {fi(r1, . . . , rni
) | rk ∈ {tk}, 1 ≤ k ≤ ni}

= {fi(t1, . . . , tni
)} = {t}.

If xi, xj /∈ V ar(A), then xi, xj /∈ V ar({t}) for all t ∈ A. Then we have

A ·ij B = (
⋃

a∈A

{a}) ·ij B =
⋃

a∈A

({a} ·ij B) =
⋃

a∈A

{a} = A.

We note that if {fi(t1, . . . , tni
)}, B ∈ P (Wτ (X)), i, j ∈ {1, . . . , n} and

i ≤ j, then for each 1 ≤ k ≤ ni, V ar({tk} ·ij B) ⊆ V ar({fi(t1, . . . , tni
)} ·ij B).

Lemma 2.3. Let A,B ∈ P (Wτ (X)) and let i, j ∈ {1, . . . , n} and i ≤ j. If
xi ∈ V ar(A) or xj ∈ V ar(A), then V ar(B) ⊆ V ar(A ·ij B).

Lemma 2.4. Let A,B ∈ P (Wτ (X)) and let i, j ∈ {1, . . . , n} and i ≤ j.
Then xi, xj /∈ V ar(A ·ij B) if and only if xi, xj /∈ V ar(A) or xi, xj /∈ V ar(B).

Proof. Assume that xi, xj /∈ V ar(A ·ij B). Suppose that xi ∈ V ar(A) or
xj ∈ V ar(A). By Lemma 2.3, xi, xj /∈ V ar(A ·ij B) ⊇ V ar(B). Conversely,
assume that xi, xj /∈ V ar(A) or xi, xj /∈ V ar(B). If A = ∅ or B = ∅,
then xi, xj /∈ ∅ = V ar(A ·ij B). Next, we consider A 6= ∅ and B 6= ∅. If
xi, xj /∈ V ar(A), then by Lemma 2.2, A ·ij B = A, and so xi, xj /∈ V ar(A ·ij
B) = V ar(A). If xi, xj /∈ V ar(B), then we will proceed by induction on
the complexity of the set of terms A. If A = {xi} or A = {xj}, then
A ·ij B = B, and so xi, xj /∈ V ar(A ·ij B). If A = {xs} where s 6= i and
s 6= j, then A ·ij B = A = {xs}, and so xi, xj /∈ V ar(A ·ij B). If A =
{fi(t1, . . . , tni

)} and assuming that xi, xj /∈ V ar({tk} ·ijB) for all 1 ≤ k ≤ ni,
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then xi, xj /∈
ni⋃

k=1

V ar({tk} ·ij B) = V ar(A ·ij B). If A is an arbitrary non-

empty set, then for all a ∈ A such that xi, xj /∈ V ar({a} ·ij B), and so

xi, xj /∈
⋃

a∈A

V ar({a} ·ij B) = V ar(A ·ij B).

Lemma 2.5. Let A,B ∈ P (Wτ (X)) and let i, j ∈ {1, . . . , n} and i ≤ j.
Then xi, xj /∈ A ·ij B if and only if xi, xj /∈ A or xi, xj /∈ B.

Proof. Assume that xi, xj /∈ A ·ij B. Suppose that xi ∈ A or xj ∈ A. Then

B = {xi}·ijB ⊆
⋃

a∈A

{a}·ijB = A·ijB or B = {xj}·ijB ⊆
⋃

a∈A

{a}·ijB = A·ijB,

and so xi, xj /∈ A ·ij B ⊇ B. Conversely, assume that xi, xj /∈ A or xi, xj /∈ B.
If A = ∅ or B = ∅, then xi, xj /∈ ∅ = A ·ij B. Next, consider A 6= ∅ and
B 6= ∅.
1. xi, xj /∈ A.

If A = {xs} where s 6= i, s 6= j, then A ·ij B = {xs}, so xi, xj /∈ A ·ij B.
If A = {fi(t1, . . . , tni

)}, then xi, xj /∈ A ·ij B is clear.
If A is a non-empty arbitrary set, then for all a ∈ A, we have xi, xj /∈

{a} ·ij B, and so xi, xj /∈
⋃

a∈A

{a} ·ij B = A ·ij B.

2. xi, xj /∈ B.
If A = {xs} where s = i or s = j, then A ·ijB = B, and so xi, xj /∈ A ·ijB.
If A = {xs} where s 6= i, s 6= j, then A ·ijB = {xs}, and so xi, xj /∈ A ·ijB.
If A = {fi(t1, . . . , tni

)}, then xi, xj /∈ A ·ij B is clear.
If A is a non-empty arbitrary set, then for all a ∈ A, we have xi, xj /∈

{a} ·ij B, and so xi, xj /∈
⋃

a∈A

{a} ·ij B = A ·ij B.

Lemma 2.6. Let A,B ∈ P (Wτ(X)) and let i, j ∈ {1, . . . , n} and i ≤ j. If
xi ∈ A ·ij B or xj ∈ A ·ij B, then B ⊆ A ·ij B.

Proof. By Lemma 2.5, (xi ∈ A or xj ∈ A) and (xi ∈ B or xj ∈ B). Then

B = Ŝn
g ({xk}, {x1}, . . . , {xi−1}, B, {xi+1}, . . . , {xj−1}, B, {xj+1}, . . . , {xn})

⊆ Ŝn
g (A, {x1}, . . . , {xi−1}, B, {xi+1}, . . . , {xj−1}, B, {xj+1}, . . . , {xn})

= A ·ij B where k = i or k = j.

Therefore, B ⊆ A ·ij B.

Lemma 2.7. Let A,B ∈ P (Wτ(X)) and let i, j, k ∈ {1, . . . , n} and i ≤ j. If
xk ∈ A ·ij B and xk /∈ A, then B ⊆ A ·ij B and xk ∈ B.
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Proof. Assume that xk ∈ A ·ij B and xk /∈ A. Then there exists a ∈ A such
that xk ∈ {a} ·ij B. Suppose that a 6= xi and a 6= xj . Then xk ∈ {a} ·ij B =
{a}, and so xk ∈ {a} ⊆ A, it is a contradiction. Therefore, a = xi or a = xj.
Then xk ∈ {a} ·ij B = B, and so xk ∈ B. By Lemma 2.6, B ⊆ A ·ij B.

3 Idempotent and Regular Elements

An element of the semigroup (P (Wτ (X)); ·ij) is called idempotent if A ·ijA =
A and called regular if A = A ·ij B ·ij A for some B ∈ P (Wτ (X)). Let
t ∈ Wτ (X). The number of operation symbols occurring in t is denoted by
op(t). Let A ∈ P (Wτ(X)). We define the following sets:

A
′

:= {a|a ∈ A and xi ∈ V ar({a}) or xj ∈ V ar({a})},

A
′′

:= {a|a ∈ A and xi, xj /∈ V ar({a})},

Ar := {a|a ∈ A and op(a) = r}.

We observe that A = A
′

∪A
′′

.
In the case xi, xj /∈ V ar(A), A ·ij A = A by Lemma 2.2, i.e., A is idem-

potent. For the case xi ∈ V ar(A) or xj ∈ V ar(A), we show that if A is
idempotent, then xi ∈ A or xj ∈ A. The following lemma is a more general
result.

Lemma 3.1. Let A,B ∈ P (Wτ (X)) and xi ∈ V ar(A) or xj ∈ V ar(A). If
A = B ·ij A or A = A ·ij B, then xi ∈ B or xj ∈ B.

Proof. Assume that A = B·ijA. If xi, xj /∈ V ar(B), then A = B·ijA = B, and
so xi, xj /∈ V ar(A), a contradiction. Therefore, xi ∈ V ar(B) or xj ∈ V ar(B)
which means B

′

6= ∅. Suppose that xi, xj /∈ B. Then op(b) ≥ 1 for all b ∈ B
′

.
Since xi ∈ V ar(A) or xj ∈ V ar(A), A

′

6= ∅. Let s be the least natural number
such that A

′

s 6= ∅. Consider h ∈ A
′

; that is, h ∈ A and xi ∈ V ar({h}) or
xj ∈ V ar({h}). Because of A = B ·ijA and B = B

′

∪B
′′

, we get A = B ·ijA =
(B

′

∪B
′′

)·ijA = (B
′

·ijA)∪(B
′′

·ijA). Since B
′′

·ijA = B
′′

, and xi ∈ V ar({h}) or
xj ∈ V ar({h}), we have h ∈ B

′

·ij A. So, op(h) ≥ 1+ s > s and h /∈ A
′

s for all
h ∈ A

′

, a contradiction. Then xi ∈ B or xj ∈ B. Assume that A = A·ijB and
xi, xj /∈ B. Then op(b) ≥ 1 for all b ∈ B

′

. Since xi ∈ V ar(A) or xj ∈ V ar(A),
A

′

6= ∅. Let s be the least natural number such that A
′

s 6= ∅. Consider h ∈ A
′

.
Since A = A

′

∪ A
′′

, A = A ·ij B = (A
′

∪ A
′′

) ·ij B = (A
′

·ij B) ∪ (A
′′

·ij B),
and so h ∈ A

′

·ij B. Since B = B
′

∪ B
′′

and h /∈ A
′

·ij B
′′

, h ∈ A
′

·ij B
′

. So,
op(h) ≥ s + 1 > s, and then h /∈ A

′

s for all h ∈ A
′

, a contradiction. Then
xi ∈ B or xj ∈ B.
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Corollary 3.2. Let A ∈ P (Wτ (X)) with xi ∈ V ar(A) or xj ∈ V ar(A). If A
is an idempotent element of (P (Wτ (X)); ·ij), then xi ∈ A or xj ∈ A.

Proof. Assume that A is an idempotent element of (P (Wτ(X)); ·ij). Then
A = A ·ij A. By Lemma 3.1, we get that xi ∈ A or xj ∈ A.

Lemma 3.3. Let A,B ∈ P (Wτ(X)) and xi ∈ V ar(A) or xj ∈ V ar(A). If
A = A ·ij B and if there is a natural number s ≥ 1 such that B

′

s 6= ∅, then A
is infinite.

Proof. Assume that A is finite. Then A
′

is also finite. Let t ∈ A′ such that
t has a maximal number of occurrences of operation symbols. Then with
b ∈ B

′

s, we have op(b) = s ≥ 1. Consider

h ∈ Ŝn
g ({t}, {x1}, ..., {xi−1}, {b}, {xi+1}, ..., {xj−1}, {b}, {xj+1}, ..., {xn})

⊆ Ŝn
g ({t}, {x1}, ..., {xi−1}, B, {xi+1}, ..., {xj−1}, B, {xj+1}, ..., {xn})

⊆ Ŝn
g (A, {x1}, ..., {xi−1}, B, {xi+1}, ..., {xj−1}, B, {xj+1}, ..., {xn})

= A ·ij B = A.

Then op(h) ≥ op(t)+1 > op(t) and xi ∈ V ar({h}) or xj ∈ V ar({h}). Hence,
h ∈ A

′

and op(h) > op(t) is a contradiction. Therefore, A is infinite.

Corollary 3.4. Let A be idempotent in (P (Wτ (X)); ·ij). If A
′

s 6= ∅ for some
s ≥ 1, then A is infinite.

Theorem 3.5. The set A is idempotent in (P (Wτ(X)); ·ij) if and only if it
is regular.

Proof. It is clear that every idempotent element of P (Wτ (X)) is a regular
element. Conversely, let A be a regular element of P (Wτ (X)). Then there
exists B ∈ P (Wτ (X)) such that A = A·ijB ·ijA. If xi, xj /∈ V ar(A), then A is
idempotent. If xi ∈ V ar(A) or xj ∈ V ar(A), then by Lemma 3.1, xi ∈ B ·ijA
or xj ∈ B ·ij A. By Lemma 2.6, we have A ⊆ B ·ij A ⊆ A ·ij (B ·ij A) = A.
Then A = B ·ij A, and so A = A ·ij A. Therefore, A is idempotent.

Lemma 3.6. Let A ∈ P (Wτ (X)) be a regular (idempotent) element of the
semigroup (P (Wτ (X)); ·ij) with xi ∈ V ar(A) or xj ∈ V ar(A). Then for all
∅ 6= B ⊆ A we have xi ∈ B or xj ∈ B if and only if A = A ·ij B ·ij A.

Proof. Since A is idempotent and xi ∈ V ar(A) or xj ∈ V ar(A), xi ∈ A or
xj ∈ A by Corollary 3.2. Let ∅ 6= B ⊆ A. Assume that xi ∈ B or xj ∈ B.
By Lemma 2.6, A ⊆ B ·ij A ⊆ A ·ij B ·ij A ⊆ A ·ij A ·ij A = A ·ij A = A, and
so A = A ·ij B ·ij A. Conversely, assume that A = A ·ij B ·ij A. If xi, xj /∈ B,
then by Lemma 2.5, xi, xj /∈ B ·ij A, and so xi, xj /∈ A ·ij B ·ij A = A is a
contradiction. Thus, xi ∈ B or xj ∈ B.
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4 Green’s relations on P (Wτ(X))

In this section, we characterize all Green’s relations for the semigroup
(P (Wτ(X)); ·ij). First, we recall the definition of all Green’s relations.

Let A,B ∈ P (Wτ(X)). Green’s relations L,R,H,D and J are defined
as follows:

(i) ALB if and only if there are C,D ∈ P (Wτ(X)) such that C ·ij A = B
and D ·ij B = A.

(ii) ARB if and only if there are E, F ∈ P (Wτ (X)) such that A ·ij E = B
and B ·ij F = A.

(iii) H = L ∩R.

(iv) D = L ◦ R = R ◦ L.

(v) AJB if and only if there are C,D,E, F ∈ P (Wτ(X)) such that C ·ij
A ·ij D = B and E ·ij B ·ij F = A.

First, we characterize Green’s relation L and R for our semigroup. We
consider the cases ALB and ARB for xi, xj /∈ V ar(A) and xi ∈ V ar(A) or
xj ∈ V ar(A).

Theorem 4.1. Let A,B ∈ P (Wτ(X)).

(i) If xi, xj /∈ V ar(A), then ALB if and only if xi, xj /∈ V ar(B).

(ii) If xi ∈ V ar(A) or xj ∈ V ar(A), then ALB if and only if A = B.

Proof. (i) Assume that ALB. Then there are C,D ∈ P (Wτ (X)) such that
A = C ·ij B and B = D ·ij A. Since xi, xj /∈ V ar(A) and B = D ·ij A,
by Lemma 2.4, xi, xj /∈ V ar(D ·ij A) = V ar(B). Conversely, assume that
xi, xj /∈ V ar(B). Since xi, xj /∈ V ar(A), by Lemma 2.2, we have B ·ij A = B
and A ·ij B = A. Therefore, ALB.

(ii) Assume that ALB. Then there are C,D ∈ P (Wτ (X)) such that
A = C ·ij B and B = D ·ij A. Thus A = C ·ij D ·ij A and B = D ·ij C ·ij B.
By Lemma 3.1, we have xi ∈ C ·ij D or xj ∈ C ·ij D. By Lemma 2.5, we have
xi or xj ∈ C and xi or xj ∈ D. By Lemma 2.5, xi ∈ C ·ij D or xj ∈ C ·ij D.
By Lemma 2.6, D ⊆ C ·ijD, and so B = D ·ijA ⊆ C ·ijD ·ijA = A. Similarly,
since xi ∈ C or xj ∈ C, by Lemma 2.5, xi ∈ D ·ij C or xj ∈ D ·ij C. By
Lemma 2.6, C ⊆ D ·ij C. Then A = C ·ij B ⊆ D ·ij C ·ij B = B. Therefore,
A = B. The converse is clear.
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Theorem 4.2. Let A,B ∈ P (Wτ (X)).

(i) If xi, xj /∈ V ar(A), then ARB if and only if A = B.

(ii) If xi ∈ V ar(A) or xj ∈ V ar(A) and ARB, then xi ∈ V ar(B) or
xj ∈ V ar(B), and {a ∈ A | xi, xj /∈ V ar({a})} = {b ∈ B | xi, xj /∈
V ar({b})}.

Proof. (i) Assume that ARB. Then there are U, V ∈ P (Wτ (X)) such that
A = B ·ij U and B = A ·ij V . By Lemma 2.2 and xi, xj /∈ V ar(A), we have
B = A ·ij V = A. The converse is clear.

(ii) Assume that ARB. Then there are U, V ∈ P (Wτ(X)) such that A =
B ·ijU and B = A ·ijV . Since xi ∈ V ar(A) or xj ∈ V ar(A), xi ∈ V ar(B ·ijU)
or xj ∈ V ar(B ·ij U). By Lemma 2.4, we have xi ∈ V ar(B) or xj ∈ V ar(B)
and xi ∈ V ar(U) or xj ∈ V ar(U). If a ∈ A and xi, xj /∈ V ar({a}), then
a ∈ {a} ·ij V ⊆ A ·ij V = B. Similarly, if b ∈ B and xi, xj /∈ V ar({b}), then
b ∈ {b} ·ij U ⊆ B ·ij U = A.

Next, we consider the characterizations of the other three remaining re-
lations H,D and J .

Theorem 4.3. For (P (Wτ (X)); ·ij), the characterizations of H and D are

(i) H = R,

(ii) D = L.

Since {x1} ·12 {x2} ·12 {x1} = {x1} and {x2} ·12 {x1} ·12 {x2} = {x2}, by
Theorem 4.1, J * L and so, L is a proper subset of J .

Theorem 4.4. Let A,B ∈ P (Wτ (X)).

(i) If xi, xj /∈ V ar(A), then AJB if and only if ALB.

(ii) If xi ∈ V ar(A) or xj ∈ V ar(A) and AJB, then xi ∈ V ar(B) or
xj ∈ V ar(B), and {a ∈ A | xi, xj /∈ V ar({a})} = {b ∈ B | xi, xj /∈
V ar({b})}.

Proof. Let A,B ∈ P (Wτ (X)).
(i) Let xi, xj /∈ V ar(A). Assume that ALB. Then there exist U, V ∈

P (Wτ (X)) such that A = U ·ij B and B = V ·ij A. By Theorem 4.1, we
have xi, xj /∈ V ar(B). So, A = U ·ij B ·ij C and B = V ·ij A ·ij D for all
C,D ∈ P (Wτ(X)). Therefore, AJB. The converse is clear.
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(ii) Let xi ∈ V ar(A) or xj ∈ V ar(A). Assume that AJB. Then there
exist U, V, S, T ∈ P (Wτ (X)) such that A = U ·ij B ·ij V and B = S ·ij
A ·ij T. Since xi ∈ V ar(A) or xj ∈ V ar(A), xi ∈ V ar(U ·ij B ·ij V ) or
xj ∈ V ar(U ·ijB ·ij V ). By Lemma 2.4, we have xi ∈ V ar(U) or xj ∈ V ar(U)
and xi ∈ V ar(B) or xj ∈ V ar(B) and xi ∈ V ar(V ) or xj ∈ V ar(V ). So,
xi ∈ V ar(S) or xj ∈ V ar(S) and xi ∈ V ar(T ) or xj ∈ V ar(T ). If a ∈ A
and xi, xj /∈ V ar({a}), then a ∈ {a} ·ij T ⊆ A ·ij T ⊆ S ·ij A ·ij T = B
by Lemma 2.4 and 2.6. Similarly, if b ∈ B and xi, xj /∈ V ar({b}), then
b ∈ {b} ·ij V ⊆ B ·ij V ⊆ U ·ij B ·ij V = A.
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