# On the Diophantine equation $147^{x}+741^{y}=z^{2}$ 

Nongluk Viriyapong, Chokchai Viriyapong
Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Mahasarakham University
Maha Sarakham, 44150, Thailand
email: nongluk.h@msu.ac.th, chokchai.v@msu.ac.th
(Received September 26, 2023, Accepted November 1, 2023, Published November 10, 2023)

Abstract<br>In this paper, we prove that the Diophantine equation $147^{x}+741^{y}=z^{2}$ has no non-negative integer solution.

## 1 Introduction

In 2013, Sroysang [1] showed that the Diophantine equation $23^{x}+32^{y}=z^{2}$ has no non-negative integer solution. In 2014, Sroysang [2] proved that the Diophantine equation $46^{x}+64^{y}=z^{2}$ has no non-negative integer solution. In 2016, Srisarakham and Thongmoon [3] showed that $(1,0,7)$ is a unique non-negative integer solution for the Diophantine equation $48^{x}+84^{y}=z^{2}$. In 2019, Sugandha et al. [4] verified that the Diophantine equation $13^{x}+31^{y}=$ $z^{2}$ has no non-negative integer solution.

In this paper, we study the Diophantine equation $147^{x}+741^{y}=z^{2}$ where $x, y$ and $z$ are non-negative integers.

## 2 Preliminaries

Throughout this paper, $a \equiv_{m} b$ always means $a$ is congruent to $b$ modulo $m$ where $a, b, m$ are integers such that $m \geqslant 1$. Moreover, we will write $a \equiv_{m} b, c$

Key words and phrases: Diophantine equation, congruence.
AMS (MOS) Subject Classifications: 11D61.
The corresponding author is Chokchai Viriyapong.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
to mean that $a \equiv_{m} b$ or $a \equiv_{m} c$.
Now, we shall recall the Catalan's conjecture [5] of 1844 which was proved by Mihailescu [6] in 2004.

Theorem 2.1 (Catalan's conjecture). The Diophantine equation $a^{x}-b^{y}=$ 1 has the unique solution $(a, b, x, y)=(3,2,2,3)$ where $a, b, x$ and $y$ are integers with $\min \{a, b, x, y\}>1$.

Next, we need the following lemmas.
Lemma 2.2. The Diophantine equation $147^{x}+1=z^{2}$ has no non-negative integer solution where $x, y, z$ are non-negative integers.

Proof. Assume that there exist non-negative integers $x$ and $z$ such that $147^{x}+1=z^{2}$. If $x=0, z^{2}=2$, which is a contradiction. Now, we have $x \geqslant 1$. By Theorem 2.1, $x=1$. Then $z^{2}=148$ which is impossible. This finishes the proof.

Lemma 2.3. The Diophantine equation $1+741^{y}=z^{2}$ has no non-negative integer solution where $x, y, z$ are non-negative integers.

Proof. The proof is similar to the proof of Lemma 2.2.
Lemma 2.4. [7] If $z$ is an integer, then $z^{2} \equiv_{19} 0,1,4,5,6,7,9,11,16,17$.

## 3 Main Results

Now, we shall prove a lemma which will be useful in the main theorem.
Lemma 3.1. If $x$ is a positive odd integer, then $14^{x} \equiv_{19} 2,3,8,10,12,13,14,15,18$.
Proof. We will prove by induction that $14^{2 n-1} \equiv_{19} 2,3,8,10,12,13,14,15,18$ for all $n \in \mathbb{N}$. If $n=1$, we have $14^{1} \equiv_{19} 14$. Thus the statement is true for $n=1$. Assume that it is true for $n=k$. Then $14^{2 k-1} \equiv_{19}$ $2,3,8,10,12,13,14,15,18$, and so $14^{2 k+1} \equiv_{19} 12,18,10,3,15,2,8,14,13$. Thus the statement is true for $n=k+1$ as desired.

Next, we shall give the main result.
Theorem 3.2. The Diophantine equation $147^{x}+741^{y}=z^{2}$ has no nonnegative integer solution where $x, y, z$ are non-negative integers.

Diophantine equation $255^{x}+323^{y}=z^{2}$

Proof. Assume that there exist non-negative integers $x, y, z$ such that $147^{x}+741^{y}=z^{2}$. By Lemmas 2.2 and $2.3, x \geqslant 1$ and $y \geqslant 1$. If $x$ is even, then $z^{2}=147^{x}+741^{y} \equiv_{4} 2$, which contradicts with the fact that $z^{2} \equiv_{4} 0,1$. Then $x$ is odd. Since $147 \equiv_{19} 14$, by Lemma 3.1, we have $147^{x} \equiv_{19} 2,3,8,10,12,13,14,15,18$. Since $741^{y} \equiv_{19} 0$, we obtain that $z^{2} \equiv_{19} 2,3,8,10,12,13,14,15,18$, which contradicts with Lemma 2.4. This completes the proof.

## 4 Conclusion

In this paper, we showed that the Diophantine equation $147^{x}+741^{y}=z^{2}$ has no non-negative integer solution where $x, y$ and $z$ are non-negative integers.

Acknowledgment. This research project was financially supported by Mahasarakham University.

## References

[1] B. Sroysang, On the Diophantine Equation $23^{x}+32^{y}=z^{2}$, Int. J. Pure Appl. Math., 84, no. 3, (2013), 231-234.
[2] B. Sroysang, On the Diophantine Equation $46^{x}+64^{y}=z^{2}$, Int. J. Pure Appl. Math., 91, no. 3, (2014), 399-402.
[3] N. Srisarakham, M. Thongmoon, The solution of Diophantine equation $48^{x}+84^{y}=z^{2}$, RMUTSB Acad. J., 4, no. 2, (2016), 140-148.
[4] A. Sugandha, A. Tripena, A. Prabowo, Solution to NonLinear Exponential Diophantine Equation $13^{x}+31^{y}=z^{2}$, Journal of Physics: Conference Series, 1179, No. 1, (2019).
[5] E. Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27, (1844), 192.
[6] S. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167-195.
[7] N. Viriyapong, C. Viriyapong. On the Diophantine equation $n^{x}+19^{y}=$ $z^{2}$, where $n \equiv 2(\bmod 57)$, Int. J. Math. Comput. Sci., 17, no. 4, (2022), 1639-1642.

