Highest endomorphisms of a Boolean lattice

Aveya Charoenpol ${ }^{1}$, Udom Chotwattakawanit ${ }^{2}$
${ }^{1}$ Division of Mathematics
Faculty of Engineering
Rajamangala University of Technology Isan Khonkaen Campus
Khon Kaen 40000, Thailand
${ }^{2}$ Department of Mathematics
Faculty of Science
Khon Kaen University
Khon Kaen 40002, Thailand

email: aveya.ch@rmuti.ac.th, udomch@kku.ac.th
(Received July 31, 2023, Revised October 7, 2023, Accepted October 9, 2023, Published November 10, 2023)

Abstract

An endomorphism of a finite algebra is said to be highest if its pre-period is greater than or equal to the pre-period of all its endomorphisms. In this paper, we characterize all highest endomorphisms of a Boolean lattice.

1 Introduction

One of the significant algebras is a monounary algebra which consists of a set and a unary operation on it. The advantage is its easy visualization. The important theories of unary and monounary algebras are shown in many monographs; for instance, $[7,9,10,11]$.

Let $f: A \rightarrow A$ be a unary function on a set A. An element $a \in A$ is called a cyclic if $f^{n}(a)=a$ for some $n \in \mathbb{N}$. The height of an element $x \in A$,

Key words and phrases: Pre-period, unary algebra, lattice, Boolean, endomorphism.
AMS (MOS) Subject Classifications: 06C05, 08A60, 08A35
The corresponding author is Udom Chotwattakawanit.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
denoted by $\operatorname{ht}(x)$, is the least non-negative integer i such that $f^{i}(x)$ is a cyclic element. The height of the finite monounary algebra (A, f) is defined by

$$
\operatorname{ht}(A, f):=\max \{\operatorname{ht}(x) \mid x \in A\}
$$

In other words, the height of (A, f) is the least non-negative integer $\lambda(f)$ satisfying $f^{\lambda(f)}(A)=f^{\lambda(f)+1}(A)$ and it is known as the pre-period of $f[14$, 15].

It is well-known that any algebra can be connected with monounary algebras by the notion of endomorphism [5, 6, 8, 12, 13]. For any finite algebra A and its endomorphism f, one can see that $|A|-1$ is an upper bound of $\lambda(f)$. So there exists an endomorphism ψ, called highest endomorphism, with $\lambda(\psi) \geq \lambda(g)$ for all endomorphisms g of \mathbf{A}. In $[1,2,3,4]$, the authors focused on a finite lattice and showed that, for a finite modular \mathbf{L}, the pre-period of its endomorphism is less than or equal to the length of \mathbf{L} where the length $\ell(\mathbf{L})$ of \mathbf{L} is defined by $|C|-1$ for the longest chain C in \mathbf{L}. A finite modular lattice \mathbf{L} is said to have the maximum pre-period property (briefly MPP) if $\lambda(\mathbf{L})=\ell(\mathbf{L})$. They gave a necessary and sufficient condition of the highest endomorphism of lattice having MPP.

A bounded distributive lattice \mathbf{B} is said to be Boolean if, for each $a \in B$, there exists an element (unique) a^{\prime}, called the complement of a, such that $a \wedge a^{\prime}$ is the bottom and $a \vee a^{\prime}$ is the top. A Boolean lattice has MPP [3] and there are some highest endomorphisms. Consequently, it is interesting to find all highest endomorphisms of a Boolean lattice.

2 Preliminaries

Let \mathbf{P} be an ordered set and let $x, y \in P$. We say that x is covered by y, written as $x \prec y$ or $y \succ x$, if $x<y$ and $x \leq z<y$ implies $z=x$. An n-element chain is the ordered set $\left\{c_{1} \prec c_{2} \prec \ldots \prec c_{n}\right\}$, denoted by \mathbf{n}. It is well-known that a Boolean lattice is the direct power $\mathbf{2}^{n}$. A unary operation f of a lattice $\mathbf{L}=\langle L ; \vee, \wedge\rangle$ is said to be an endomorphism if $f(a \vee b)=f(a) \vee f(b)$ and $f(a \wedge b)=f(a) \wedge f(b)$ for all $a, b \in L$.

The following result follows from Corollary 6 in [2].
Theorem 2.1. Let \mathbf{L} be a finite modular lattice with the top 1 , the bottom 0 and $\ell(\mathbf{L})=n$ and let f be an endomorphism of \mathbf{L}. Then $\lambda(f)=n$ if and only if either

$$
0=f^{n}(1) \prec f^{n-1}(1) \prec \ldots \prec f(1) \prec 1
$$

or

$$
0 \prec f(0) \prec \ldots \prec f^{n-1}(0) \prec f^{n}(0)=1
$$

Moreover, such f is highest.
Example 2.1. Let $\mathbf{2}=\{0 \prec 1\}$. The endomorphisms $f: \mathbf{2}^{n} \rightarrow \mathbf{2}^{n}$ and $f^{\partial}: \mathbf{2}^{n} \rightarrow \mathbf{2}^{n}$ defined by

$$
f\left(a_{1}, \ldots, a_{n}\right)=\left(0, a_{1}, \ldots, a_{n-1}\right)
$$

and

$$
f^{\partial}\left(a_{1}, \ldots, a_{n}\right)=\left(1, a_{1}, \ldots, a_{n-1}\right)
$$

for all $a_{1}, \ldots, a_{n} \in\{0,1\}$ are highest.

3 All highest endomorphisms of 2^{n}

Let S_{n} be the set of all permutations on $\{1, \ldots, n\}$. For each set A, we consider an element $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$ in A^{n} as the function $\bar{a}:\{1, \ldots, n\} \rightarrow A$ defined by $\bar{a}(i)=a_{i}$ for all $i \in\{1, \ldots, n\}$. Note that $\mathbf{2}^{n}$ is a lattice having the length n with the top $\overline{1}=(1, \ldots, 1)$ and the bottom $\overline{0}=(0, \ldots, 0)$ and for each $\bar{a}, \bar{b} \in \mathbf{2}^{n}$,

$$
(\bar{a} \vee \bar{b})(i)=\bar{a}(i) \vee \bar{b}(i)
$$

and

$$
(\bar{a} \wedge \bar{b})(i)=\bar{a}(i) \wedge \bar{b}(i)
$$

for all $i \in\{1, \ldots, n\}$. We are going to define highest endomorphisms which are general forms of the functions in Example 2.1.

Theorem 3.1. For each $\sigma \in S_{n}$, define $\psi_{\sigma}: \mathbf{2}^{n} \rightarrow \mathbf{2}^{n}$ and $\psi_{\sigma}^{\partial}: \mathbf{2}^{n} \rightarrow \mathbf{2}^{n}$ by

$$
\psi_{\sigma}(\bar{a})(\sigma(i))= \begin{cases}\bar{a}(\sigma(i-1)) & \text { if } i>1 \\ 0 & \text { if } i=1\end{cases}
$$

and

$$
\psi_{\sigma}^{\partial}(\bar{a})(\sigma(i))= \begin{cases}\bar{a}(\sigma(i-1)) & \text { if } i>1 \\ 1 & \text { if } i=1\end{cases}
$$

for all $\bar{a} \in \mathbf{2}^{n}$. Then ψ_{σ} and ψ_{σ}^{∂} are highest endomorphisms of $\mathbf{2}^{n}$ for all $\sigma \in S_{n}$.

Proof. Let $\sigma \in S_{n}$ and let $\bar{a}, \bar{b} \in \mathbf{2}^{n}$. Then for each $i \in\{1, \ldots, n\}$,

$$
\begin{aligned}
\psi_{\sigma}(\bar{a} \vee \bar{b})(\sigma(i)) & = \begin{cases}(\bar{a} \vee \bar{b})(\sigma(i-1)) & \text { if } i>1, \\
0 & \text { if } i=1\end{cases} \\
& = \begin{cases}\bar{a}(\sigma(i-1)) \vee \bar{b}(\sigma(i-1)) & \text { if } i>1, \\
0 & \text { if } i=1\end{cases} \\
& =\psi_{\sigma}(\bar{a})(\sigma(i)) \vee \psi_{\sigma}(\bar{b})(\sigma(i)) \\
& =\left(\psi_{\sigma}(\bar{a}) \vee \psi_{\sigma}(\bar{b})\right)(\sigma(i)) .
\end{aligned}
$$

Hence, $\psi_{\sigma}(\bar{a} \vee \bar{b})=\psi_{\sigma}(\bar{a}) \vee \psi_{\sigma}(\bar{b})$. Similarly, we get ψ_{σ} and ψ_{σ}^{∂} are endomorphisms. Moreover, for each $1 \leq k \leq n$,

$$
\psi_{\sigma}^{k}(\overline{1})(i)= \begin{cases}1 & \text { if } i \notin\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}, \\ 0 & \text { if } i \in\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}\end{cases}
$$

and

$$
\left(\psi_{\sigma}^{\partial}\right)^{k}(\overline{0})(i)= \begin{cases}1 & \text { if } i \in\{\sigma(1), \sigma(2), \ldots, \sigma(k)\} \\ 0 & \text { if } i \notin\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}\end{cases}
$$

These imply that

$$
\overline{1} \succ \psi_{\sigma}(\overline{1}) \succ \cdots \succ \psi_{\sigma}^{n-1}(\overline{1}) \succ \psi_{\sigma}^{n}(\overline{1})=\overline{0}
$$

and

$$
\overline{0} \prec \psi_{\sigma}^{\partial}(\overline{0}) \prec \cdots \prec\left(\psi_{\sigma}^{\partial}\right)^{n-1}(\overline{0}) \prec\left(\psi_{\sigma}^{\partial}\right)^{n}(\overline{0})=\overline{1}
$$

Hence, ψ_{σ} and ψ_{σ}^{∂} are highest.
We see that ψ_{ι} and ψ_{ι}^{∂} are the functions f and f^{∂} in Example 2.1, respectively where ι is the identity map on $\{1, \ldots, n\}$.

Theorem 3.2. A highest endomorphism of $\mathbf{2}^{n}$ is exactly either ψ_{σ} or ψ_{σ}^{∂} for some $\sigma \in S_{n}$.

Proof. Let f be a highest endomorphism of $\mathbf{2}^{n}$. Then $\lambda(f)=n$. Suppose that

$$
\overline{1} \succ f(\overline{1}) \succ \cdots \succ f^{n-1}(\overline{1}) \succ f^{n}(\overline{1})=\overline{0} .
$$

Then there exists $j_{1} \in\{1, \ldots, n\}$ such that

$$
f(\overline{1})(i)= \begin{cases}1 & \text { if } i \neq j_{1} \\ 0 & \text { if } i=j_{1}\end{cases}
$$

Similarly, there exists $j_{2} \in\{1, \ldots, n\}$ such that

$$
f^{2}(\overline{1})(i)= \begin{cases}1 & \text { if } i \notin\left\{j_{1}, j_{2}\right\} \\ 0 & \text { if } i \in\left\{j_{1}, j_{2}\right\} .\end{cases}
$$

Proceeding in this manner, for each $1 \leq k \leq n$, there exists $j_{k} \in\{1, \ldots, n\}$ such that

$$
f^{k}(\overline{1})(i)= \begin{cases}1 & \text { if } i \notin\left\{j_{1}, \ldots, j_{k}\right\} \tag{3.1}\\ 0 & \text { if } i \in\left\{j_{1}, \ldots, j_{k}\right\}\end{cases}
$$

We define a permutation σ on $\{1, \ldots, n\}$ by $\sigma(k)=j_{k}$ for all $k \in\{1, \ldots, n\}$. We will show that $f=\psi_{\sigma}$. For each $j \in\{1, \ldots, n\}$, the atom \bar{a}_{j} of $\mathbf{2}^{n}$ is defined by

$$
\bar{a}_{j}(i)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

It suffices to show that $f\left(\bar{a}_{\sigma(j)}\right)=\psi_{\sigma}\left(\bar{a}_{\sigma(j)}\right)$ for all $j \in\{1, \ldots, n\}$. Let $j \in\{1, \ldots, n\}$ and, for convenience, let $\bar{a}_{\sigma(n+1)}=\overline{0}$. Since $\bar{a}_{\sigma(j+1)}(\sigma(1))=$ $0=\psi_{\sigma}\left(\bar{a}_{\sigma(j)}\right)(\sigma(1))$ and for each $i \in\{2, \ldots, n\}$

$$
\begin{aligned}
\psi_{\sigma}\left(\bar{a}_{\sigma(j)}\right)(\sigma(i)) & =\bar{a}_{\sigma(j)}(\sigma(i-1)) \\
& = \begin{cases}1 & \text { if } \sigma(i-1)=\sigma(j), \\
0 & \text { if } \sigma(i-1) \neq \sigma(j) \\
1 & \text { if } \sigma(i)=\sigma(j+1), \\
0 & \text { if } \sigma(i) \neq \sigma(j+1)\end{cases} \\
& =\bar{a}_{\sigma(j+1)}(\sigma(i)),
\end{aligned}
$$

we have $\psi_{\sigma}\left(\bar{a}_{\sigma(j)}\right)=\bar{a}_{\sigma(j+1)}$. By equation 3.1, we get

$$
\begin{equation*}
f\left(\bar{a}_{\sigma(m)} \vee \cdots \vee \bar{a}_{\sigma(n)}\right)=\bar{a}_{\sigma(m+1)} \vee \cdots \vee \bar{a}_{\sigma(n)} \tag{3.2}
\end{equation*}
$$

for all $m \in\{1, \ldots, n\}$. Assume that $f\left(\bar{a}_{\sigma(j)}\right)=\left(x_{1}, \ldots, x_{n}\right)$. Then by equation 3.2,

$$
\begin{aligned}
\bar{a}_{\sigma(j+1)} \vee \cdots \vee \bar{a}_{\sigma(n)} & =f\left(\bar{a}_{\sigma(j)} \vee \cdots \vee \bar{a}_{\sigma(n)}\right) \\
& =f\left(\bar{a}_{\sigma(j)}\right) \vee f\left(\bar{a}_{\sigma(j+1)} \vee \cdots \vee \bar{a}_{\sigma(n)}\right) \\
& =\left(x_{1}, \ldots, x_{n}\right) \vee \bar{a}_{\sigma(j+2)} \vee \cdots \vee \bar{a}_{\sigma(n)}
\end{aligned}
$$

which implies that $x_{\sigma(1)}=\cdots=x_{\sigma(j)}=0$ and $x_{\sigma(j+1)}=1$. Since

$$
\begin{aligned}
\overline{0} & =f(\overline{0})=f\left(\bar{a}_{\sigma(j)} \wedge\left(\bar{a}_{\sigma(j+1)} \vee \cdots \vee \bar{a}_{\sigma(n)}\right)\right) \\
& =f\left(\bar{a}_{\sigma(j)}\right) \wedge f\left(\bar{a}_{\sigma(j+1)} \vee \cdots \vee \bar{a}_{\sigma(n)}\right) \\
& =\left(x_{1}, \ldots, x_{n}\right) \wedge \bar{a}_{\sigma(j+2)} \vee \cdots \vee \bar{a}_{\sigma(n)},
\end{aligned}
$$

we get $x_{\sigma(j+2)}=\cdots=x_{\sigma(n)}=0$. Hence $f\left(\bar{a}_{\sigma(j)}\right)=\bar{a}_{\sigma(j+1)}=\psi_{\sigma}\left(\bar{a}_{\sigma(j)}\right)$. Since j is arbitrary and σ is a permutation on $\{1, \ldots, n\}$, we have $f=\psi_{\sigma}$. Similarly, if

$$
\overline{0} \prec f(\overline{0}) \prec \cdots \prec f^{n-1}(\overline{0}) \prec f^{n}(\overline{0})=\overline{1},
$$

then $f=\psi_{\sigma}^{\partial}$ for some $\sigma \in S_{n}$.

Acknowledgment

This research was supported by the Department of Mathematics, Faculty of Science, Khon Kaen University, in the fiscal year 2022.

References

[1] A. Charoenpol, U. Chotwattakawanit, The Relationship of Modular Lattice with Maximum Pre-period Property and Minimum Pre-period Property, International Journal of Mathematics and Computer Science, 17, no. 2, (2022), 881-889.
[2] A. Charoenpol, U. Chotwattakawanit, The Pre-period of the Glued Sum of Finite Modular Lattices, Discussiones Mathematicae-General Algebra and Applications, https://doi.org/10.7151/dmgaa.1420.
[3] A. Charoenpol, U. Chotwattakawanit, The maximum pre-period property of the direct product of chains, Asian-European Journal of Mathematics, 16, no. 9, 2023, 2350155.
[4] U. Chotwattakawanit, A. Charoenpol, A Pre-period of a Finite Distributive Lattice, Discussiones Mathematicae-General Algebra and Applications 43, no. 1, (2023), 141-148.
[5] E. Halušková, Strong endomorphism kernel property for monounary algebras, Mathematica Bohemica, 143, (2017), 1-11.
[6] E. Halušková, Some monounary algebras with EKP, Mathematica Bohemica, 145, (2019), 1-14.
[7] D. Jakubíková-Studenovská, J. Pócs, Monounary algebras, P.J. Šafárik Univ. Košice, Košice, 2009.
[8] D. Jakubíková-Studenovská, K. Potpinková, The endomorphism spectrum of a monounary algebra, Math. Slovaca, 64, (2014), 675-690.
[9] B. Jónsson, Topics in Universal Algebra, Lecture Notes in Mathematics 250, Springer, Berlin, 1972
[10] M. Novotný, O. Kopeček, J. Chvalina, Homomorphic transformations: Why and possible ways to How, Masaryk University, Brno, Czech Republic, 2012.
[11] J. Pitkethly, B. Davey, Dualisability: Unary Algebras and Beyond, Advances in Mathematics 9, Springer, New York, 2005.
[12] B. V. Popov, O. V. Kovaleva, On a Characterization of Monounary Algebras by their Endomorphism Semigroups, Semigroup Forum, 73, (2006), 444-456.
[13] I. Pozdnyakova, Semigroups of endomorphisms of some infinite monounary algebras, Journal of Mathematical Sciences, 190, (2013), 658668.
[14] C. Ratanaprasert, K. Denecke, Unary operations with long pre-periods, Discrete Mathematics, 308, (2008), 4998-5005.
[15] D. Zupnik, Cayley functions, Semigroup Forum, 3, (1971), 349-358.

