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Abstract

An endomorphism of a finite algebra is said to be highest if its

pre-period is greater than or equal to the pre-period of all its endo-

morphisms. In this paper, we characterize all highest endomorphisms

of a Boolean lattice.

1 Introduction

One of the significant algebras is a monounary algebra which consists of
a set and a unary operation on it. The advantage is its easy visualization.
The important theories of unary and monounary algebras are shown in many
monographs; for instance, [7, 9, 10, 11].

Let f : A → A be a unary function on a set A. An element a ∈ A is
called a cyclic if fn(a) = a for some n ∈ N. The height of an element x ∈ A,
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denoted by ht(x), is the least non-negative integer i such that f i(x) is a cyclic
element. The height of the finite monounary algebra (A, f) is defined by

ht(A, f) := max {ht(x) | x ∈ A} .

In other words, the height of (A, f) is the least non-negative integer λ(f)
satisfying fλ(f)(A) = fλ(f)+1(A) and it is known as the pre-period of f [14,
15].

It is well-known that any algebra can be connected with monounary al-
gebras by the notion of endomorphism [5, 6, 8, 12, 13]. For any finite algebra
A and its endomorphism f , one can see that |A| − 1 is an upper bound of
λ(f). So there exists an endomorphism ψ, called highest endomorphism, with
λ(ψ) ≥ λ(g) for all endomorphisms g of A. In [1, 2, 3, 4], the authors focused
on a finite lattice and showed that, for a finite modular L, the pre-period of
its endomorphism is less than or equal to the length of L where the length

ℓ(L) of L is defined by |C|−1 for the longest chain C in L. A finite modular
lattice L is said to have the maximum pre-period property (briefly MPP) if
λ(L) = ℓ(L). They gave a necessary and sufficient condition of the highest
endomorphism of lattice having MPP.

A bounded distributive lattice B is said to be Boolean if, for each a ∈ B,
there exists an element (unique) a′, called the complement of a, such that
a ∧ a′ is the bottom and a ∨ a′ is the top. A Boolean lattice has MPP [3]
and there are some highest endomorphisms. Consequently, it is interesting
to find all highest endomorphisms of a Boolean lattice.

2 Preliminaries

Let P be an ordered set and let x, y ∈ P . We say that x is covered by

y, written as x ≺ y or y ≻ x, if x < y and x ≤ z < y implies z = x.
An n-element chain is the ordered set {c1 ≺ c2 ≺ . . . ≺ cn}, denoted by
n. It is well-known that a Boolean lattice is the direct power 2n. A unary
operation f of a lattice L = 〈L;∨,∧〉 is said to be an endomorphism if
f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b) for all a, b ∈ L.

The following result follows from Corollary 6 in [2].

Theorem 2.1. Let L be a finite modular lattice with the top 1, the bottom
0 and ℓ(L) = n and let f be an endomorphism of L. Then λ(f) = n if and
only if either

0 = fn(1) ≺ fn−1(1) ≺ . . . ≺ f(1) ≺ 1
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or

0 ≺ f(0) ≺ . . . ≺ fn−1(0) ≺ fn(0) = 1.

Moreover, such f is highest.

Example 2.1. Let 2 = {0 ≺ 1}. The endomorphisms f : 2n → 2n and
f∂ : 2n → 2n defined by

f(a1, . . . , an) = (0, a1, . . . , an−1)

and

f∂(a1, . . . , an) = (1, a1, . . . , an−1)

for all a1, . . . , an ∈ {0, 1} are highest.

3 All highest endomorphisms of 2n

Let Sn be the set of all permutations on {1, . . . , n}. For each set A, we
consider an element ā = (a1, . . . , an) in A

n as the function ā : {1, . . . , n} → A
defined by ā(i) = ai for all i ∈ {1, . . . , n}. Note that 2n is a lattice having
the length n with the top 1̄ = (1, . . . , 1) and the bottom 0̄ = (0, . . . , 0) and
for each ā, b̄ ∈ 2n,

(ā ∨ b̄)(i) = ā(i) ∨ b̄(i)

and

(ā ∧ b̄)(i) = ā(i) ∧ b̄(i)

for all i ∈ {1, . . . , n}. We are going to define highest endomorphisms which
are general forms of the functions in Example 2.1.

Theorem 3.1. For each σ ∈ Sn, define ψσ : 2n → 2n and ψ∂
σ : 2n → 2n by

ψσ(ā)(σ(i)) =

{

ā(σ(i− 1)) if i > 1,

0 if i = 1

and

ψ∂
σ(ā)(σ(i)) =

{

ā(σ(i− 1)) if i > 1,

1 if i = 1

for all ā ∈ 2n. Then ψσ and ψ∂
σ are highest endomorphisms of 2n for all

σ ∈ Sn.
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Proof. Let σ ∈ Sn and let ā, b̄ ∈ 2n. Then for each i ∈ {1, . . . , n},

ψσ(ā ∨ b̄)(σ(i)) =

{

(ā ∨ b̄)(σ(i− 1)) if i > 1,

0 if i = 1

=

{

ā(σ(i− 1)) ∨ b̄(σ(i− 1)) if i > 1,

0 if i = 1

= ψσ(ā)(σ(i)) ∨ ψσ(b̄)(σ(i))
= (ψσ(ā) ∨ ψσ(b̄))(σ(i)).

Hence, ψσ(ā∨ b̄) = ψσ(ā)∨ψσ(b̄). Similarly, we get ψσ and ψ∂
σ are endomor-

phisms. Moreover, for each 1 ≤ k ≤ n,

ψk
σ(1̄)(i) =

{

1 if i /∈ {σ(1), σ(2), . . . , σ(k)},

0 if i ∈ {σ(1), σ(2), . . . , σ(k)}

and

(ψ∂
σ)

k(0̄)(i) =

{

1 if i ∈ {σ(1), σ(2), . . . , σ(k)},

0 if i /∈ {σ(1), σ(2), . . . , σ(k)}.

These imply that

1̄ ≻ ψσ(1̄) ≻ · · · ≻ ψn−1
σ (1̄) ≻ ψn

σ(1̄) = 0̄

and
0̄ ≺ ψ∂

σ(0̄) ≺ · · · ≺ (ψ∂
σ)

n−1(0̄) ≺ (ψ∂
σ)

n(0̄) = 1̄.

Hence, ψσ and ψ∂
σ are highest.

We see that ψι and ψ
∂
ι are the functions f and f∂ in Example 2.1, respec-

tively where ι is the identity map on {1, . . . , n}.

Theorem 3.2. A highest endomorphism of 2n is exactly either ψσ or ψ∂
σ for

some σ ∈ Sn.

Proof. Let f be a highest endomorphism of 2n. Then λ(f) = n. Suppose
that

1̄ ≻ f(1̄) ≻ · · · ≻ fn−1(1̄) ≻ fn(1̄) = 0̄.

Then there exists j1 ∈ {1, . . . , n} such that

f(1̄)(i) =

{

1 if i 6= j1,

0 if i = j1.
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Similarly, there exists j2 ∈ {1, . . . , n} such that

f 2(1̄)(i) =

{

1 if i /∈ {j1, j2},

0 if i ∈ {j1, j2}.

Proceeding in this manner, for each 1 ≤ k ≤ n, there exists jk ∈ {1, . . . , n}
such that

fk(1̄)(i) =

{

1 if i /∈ {j1, . . . , jk},

0 if i ∈ {j1, . . . , jk}.
(3.1)

We define a permutation σ on {1, . . . , n} by σ(k) = jk for all k ∈ {1, . . . , n}.
We will show that f = ψσ. For each j ∈ {1, . . . , n}, the atom āj of 2n is
defined by

āj(i) =

{

1 if i = j,

0 if i 6= j.

It suffices to show that f(āσ(j)) = ψσ(āσ(j)) for all j ∈ {1, . . . , n}. Let
j ∈ {1, . . . , n} and, for convenience, let āσ(n+1) = 0̄. Since āσ(j+1)(σ(1)) =
0 = ψσ(āσ(j))(σ(1)) and for each i ∈ {2, . . . , n}

ψσ(āσ(j))(σ(i)) = āσ(j)(σ(i− 1))

=

{

1 if σ(i− 1) = σ(j),

0 if σ(i− 1) 6= σ(j)

=

{

1 if σ(i) = σ(j + 1),

0 if σ(i) 6= σ(j + 1)

= āσ(j+1)(σ(i)),

we have ψσ(āσ(j)) = āσ(j+1). By equation 3.1, we get

f(āσ(m) ∨ · · · ∨ āσ(n)) = āσ(m+1) ∨ · · · ∨ āσ(n) (3.2)

for all m ∈ {1, . . . , n}. Assume that f(āσ(j)) = (x1, . . . , xn). Then by equa-
tion 3.2,

āσ(j+1) ∨ · · · ∨ āσ(n) = f(āσ(j) ∨ · · · ∨ āσ(n))

= f(āσ(j)) ∨ f(āσ(j+1) ∨ · · · ∨ āσ(n))

= (x1, . . . , xn) ∨ āσ(j+2) ∨ · · · ∨ āσ(n)
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which implies that xσ(1) = · · · = xσ(j) = 0 and xσ(j+1) = 1. Since

0̄ = f(0̄) = f(āσ(j) ∧ (āσ(j+1) ∨ · · · ∨ āσ(n)))

= f(āσ(j)) ∧ f(āσ(j+1) ∨ · · · ∨ āσ(n))

= (x1, . . . , xn) ∧ āσ(j+2) ∨ · · · ∨ āσ(n),

we get xσ(j+2) = · · · = xσ(n) = 0. Hence f(āσ(j)) = āσ(j+1) = ψσ(āσ(j)).
Since j is arbitrary and σ is a permutation on {1, . . . , n}, we have f = ψσ.
Similarly, if

0̄ ≺ f(0̄) ≺ · · · ≺ fn−1(0̄) ≺ fn(0̄) = 1̄,

then f = ψ∂
σ for some σ ∈ Sn.
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