International Journal of Mathematics and Computer Science, **19**(2024), no. 2, 497–501

(M CS)

Some properties of weakly $b(\Lambda, p)$ -open functions

Nipaporn Chutiman, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics, Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: nipaporn.c@msu.ac.th, chawalit.b@msu.ac.th

(Received July 23, 2023, Accepted November 3, 2023, Published November 10, 2023)

Abstract

In this article, we introduce the concept of weakly $b(\Lambda, p)$ -open functions. Moreover, we investigate some properties of weakly $b(\Lambda, p)$ open functions.

1 Introduction

In 1983, Rose [6] introduced and studied the notions of weakly open functions and almost open functions. In 1987, Rose and Janković [5] investigated some of the fundamental properties of weakly closed functions. In 1996, Andrijević [1] introduced a new class of generalized open sets called *b*-open sets in a topological space. In 2009, Noiri [3] introduced and investigated the class of weakly *b*-open functions as a new generalization of weakly open functions. Moreover, Noiri et al. [4] introduced and studied two new classes of functions called weakly *b*- θ -open functions and weakly *b*- θ -open functions by utilizing the notions of *b*- θ -open sets and the *b*- θ -closure operator. Weak *b*- θ openness (resp. *b*- θ -closedness) is a generalization of both θ -preopenness and weak semi- θ -openness (resp. θ -preclosedness and weak semi- θ -closedness).

Key words and phrases: $b(\Lambda, p)$ -open set, weakly $b(\Lambda, p)$ -open function. The corresponding author is Nipaporn Chutiman. AMS (MOS) Subject Classifications: 54A05, 54C10.

ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Recently, Boonpok and Viriyapong [2] introduced and studied the concepts of (Λ, p) -closed sets and (Λ, p) -open sets in topological spaces. In this article, we introduce the notion of weakly $b(\Lambda, p)$ -open functions. Furthermore, several properties of weakly $b(\Lambda, p)$ -open functions are discussed.

2 Preliminaries

A subset A of a topological space (X, τ) is called (Λ, p) -closed [2] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) closed) sets in a topological space (X, τ) is denoted by $\Lambda_p O(X, \tau)$ (resp. $\Lambda_p C(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a (Λ, p) -cluster point [2] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [2] of A and is denoted by $A^{(\Lambda, p)}$. The union of all (Λ, p) open sets of X contained in A is called the (Λ, p) -interior [2] of A and is denoted by $A_{(\Lambda,p)}$. The $\theta(\Lambda,p)$ -closure [2] of A, $A^{\theta(\Lambda,p)}$, is defined as follows: $A^{\theta(\Lambda,p)} = \{x \in X \mid A \cap U^{(\Lambda,p)} \neq \emptyset \text{ for each } (\Lambda,p) \text{-open set } U \text{ containing } x\}.$ A subset A of a topological space (X, τ) is called $\theta(\Lambda, p)$ -closed [2] if A = $A^{\theta(\Lambda,p)}$. The complement of a $\theta(\Lambda,p)$ -closed set is said to be $\theta(\Lambda,p)$ -open. A point $x \in X$ is called a $\theta(\Lambda, p)$ -interior point [7] of A if $x \in U \subseteq U^{(\Lambda, p)} \subseteq A$ for some $U \in \Lambda_p O(X, \tau)$. The set of all $\theta(\Lambda, p)$ -interior points of A is called the $\theta(\Lambda, p)$ -interior [7] of A and is denoted by $A_{\theta(\Lambda, p)}$. A subset A of a topological space (X, τ) is said to be $b(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ -open [2] $\alpha(\Lambda, p)$ -open, [8]) if $A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)} \cup [A_{(\Lambda, p)}]^{(\Lambda, p)}$ (resp. $A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)}$, $A \subseteq [[A_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)}$. The union of all $b(\Lambda,p)$ -open sets of X contained in A is called the $b(\Lambda, p)$ -interior of A and is denoted by $A_{b(\Lambda, p)}$. The complement of a $b(\Lambda, p)$ -open (resp. $p(\Lambda, p)$ -open, $\alpha(\Lambda, p)$ -open) set is called $b(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $\alpha(\Lambda, p)$ -closed). The intersection of all $b(\Lambda, p)$ -closed sets of X containing A is called the $b(\Lambda, p)$ -closure of A and is denoted by $A^{b(\Lambda,p)}$.

3 Properties of weakly $b(\Lambda, p)$ -open functions

We begin this section by introducing the notion of weakly $b(\Lambda, p)$ -open functions.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly $b(\Lambda, p)$ open if $f(U) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$ for each (Λ, p) -open set U of X.

Some properties of weakly $b(\Lambda, p)$ -open...

Theorem 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $b(\Lambda, p)$ -open;
- (2) $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{b(\Lambda,p)}$ for every subset A of X;
- (3) $[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{b(\Lambda,p)})$ for every subset B of Y;
- (4) $f^{-1}(B^{b(\Lambda,p)}) \subseteq [f^{-1}(B)]^{\theta(\Lambda,p)}$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let A be any subset of X and $x \in A_{\theta(\Lambda,p)}$. Then, there exists a (Λ, p) -open set U of X such that $x \in U \subseteq U^{(\Lambda,p)} \subseteq A$. Then, $f(x) \in f(U) \subseteq f(U^{(\Lambda,p)}) \subseteq f(A)$. Since f is weakly $b(\Lambda, p)$ -open, $f(U) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)} \subseteq [f(A)]_{b(\Lambda,p)}$. This implies that $f(x) \in [f(A)]_{b(\Lambda,p)}$. Therefore, $x \in f^{-1}([f(A)]_{b(\Lambda,p)})$. Thus, $A_{\theta(\Lambda,p)} \subseteq f^{-1}([f(A)]_{b(\Lambda,p)})$ and hence $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{b(\Lambda,p)}$.

(2) \Rightarrow (3): Let *B* be any subset of *Y*. Then by (2), $f([f^{-1}(B)]_{\theta(\Lambda,p)}) \subseteq [f(f^{-1}(B))]_{b(\Lambda,p)} \subseteq B_{b(\Lambda,p)}$. Thus, $[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{b(\Lambda,p)})$.

 $(3) \Rightarrow (4)$: Let B be any subset of Y. Using (3), we have

$$X - [f^{-1}(B)]^{\theta(\Lambda,p)} = [f^{-1}(Y - B)]_{\theta(\Lambda,p)}$$

$$\subseteq f^{-1}([Y - B]_{b(\Lambda,p)}) = X - f^{-1}(B^{b(\Lambda,p)})$$

and hence $f^{-1}(B^{b(\Lambda,p)}) \subseteq [f^{-1}(B)]^{\theta(\Lambda,p)}$.

 $(4) \Rightarrow (1)$: Let U be any (Λ, p) -open set of X. By (4),

$$f^{-1}([Y - f(U^{(\Lambda, p)})]^{b(\Lambda, p)}) \subseteq [f^{-1}(Y - f(U^{(\Lambda, p)}))]^{\theta(\Lambda, p)}$$

Thus, $f^{-1}(Y - [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}) \subseteq [X - f^{-1}(f(U^{(\Lambda,p)}))]^{\theta(\Lambda,p)} \subseteq [X - U^{(\Lambda,p)}]^{\theta(\Lambda,p)}$ and hence $U \subseteq [U^{(\Lambda,p)}]_{\theta(\Lambda,p)} \subseteq f^{-1}([f(U^{(\Lambda,p)})]_{b(\Lambda,p)})$. Therefore, $f(U) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$. This shows that f is weakly $b(\Lambda, p)$ -open.

Theorem 3.3. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $b(\Lambda, p)$ -open;
- (2) for each $x \in X$ and each (Λ, p) -open set U of X containing x, there exists a $b(\Lambda, p)$ -open set V of Y containing f(x) such that $V \subseteq f(U^{(\Lambda, p)})$.

Proof. (1) \Rightarrow (2): Let U be any (Λ, p) -open set of X with $x \in U$. Since f is weakly $b(\Lambda, p)$ -open, $f(x) \in f(U) \subseteq [f(U^{(\Lambda, p)})]_{b(\Lambda, p)}$. Let $V = [f(U^{(\Lambda, p)})]_{b(\Lambda, p)}$. Then, V is $b(\Lambda, p)$ -open and $f(x) \in V \subseteq f(U^{(\Lambda, p)})$.

 $(2) \Rightarrow (1)$: Let U be any (Λ, p) -open set of X and $y \in f(U)$. It follows from (2) that $V \subseteq f(U^{(\Lambda,p)})$ for some $b(\Lambda, p)$ -open set V of Y containing y. Thus, $y \in V \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$ and hence $f(U) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$. This shows that f is weakly $b(\Lambda, p)$ -open.

Theorem 3.4. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $b(\Lambda, p)$ -open;
- (2) $[f(K_{(\Lambda,p)})]^{b(\Lambda,p)} \subseteq f(K)$ for each (Λ,p) -closed set K of X;
- (3) $[f(U)]^{b(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for each (Λ,p) -open set U of X.

Proof. (1) \Rightarrow (2): Let K be any (Λ, p) -closed set of X. Then, we have $f(X - K) = Y - f(K) \subseteq [f([X - K]^{(\Lambda, p)})]_{b(\Lambda, p)}$ and so

$$Y - f(K) \subseteq Y - [f(K_{(\Lambda,p)})]^{b(\Lambda,p)}.$$

Thus, $[f(K_{(\Lambda,p)})]^{b(\Lambda,p)} \subseteq f(K)$.

(2) \Rightarrow (3): Let U be any (Λ, p) -open set of X. Since $U^{(\Lambda,p)}$ is a (Λ, p) closed set and $U \subseteq [U^{(\Lambda,p)}]_{(\Lambda,p)}$, by (2) we have

$$[f(U)]^{b(\Lambda,p)} \subseteq [f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{b(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$$

 $(3) \Rightarrow (1)$: Let U be any (Λ, p) -open set of X. Using (3), we have

$$Y - [f(U^{(\Lambda,p)})]_{b(\Lambda,p)} = [Y - f(U^{(\Lambda,p)})]^{b(\Lambda,p)}$$

= $[f(X - U^{(\Lambda,p)})]^{b(\Lambda,p)}$
 $\subseteq f([X - U^{(\Lambda,p)}]^{(\Lambda,p)})$
= $f(X - [U^{(\Lambda,p)}]_{(\Lambda,p)}) \subseteq f(X - U) = Y - f(U)$

and hence $f(U) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$. This shows that f is weakly $b(\Lambda,p)$ -open.

The proof of the following theorem is straightforward and thus is omitted.

Theorem 3.5. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

Some properties of weakly $b(\Lambda, p)$ -open...

- (1) f is weakly $b(\Lambda, p)$ -open;
- (2) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$ for each $p(\Lambda,p)$ -open set U of X;
- (3) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$ for each $\alpha(\Lambda,p)$ -open set U of X;
- (4) $f([U^{(\Lambda,p)}]_{(\Lambda,p)}) \subseteq [f(U^{(\Lambda,p)})]_{b(\Lambda,p)}$ for each (Λ,p) -open set U of X;
- (5) $f(K_{(\Lambda,p)}) \subseteq [f(K)]_{b(\Lambda,p)}$ for each (Λ, p) -closed set K of X.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] D. Andrijević, On *b*-open sets, Mat. Vesnik, **48**, (1996), 59–64.
- [2] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15, no. 2, (2022), 415– 436.
- [3] T. Noiri, A. Al-Omari, M. S. Md. Noorani, Weakly b-open functions, Math. Balkanica, 23, nos. 1-2, (2009), 1–13.
- [4] T. Noiri, A. Al-Omari, M. S. Md. Noorani, Weak forms of open and closed functions via b-θ-open sets, Demonstratio Mathematica, 42, no. 1, (2009), 193–203.
- [5] D. A. Rose, D. S. Janković, Weakly closed functions and Hausdorff spaces, Math. Nachr., 130, (1987), 105–110.
- [6] D. A. Rose, On weak openness and almost openness, Int. J. Math. Math. Sci., 7, (1984), 35–40.
- [7] M. Thongmoon, C. Boonpok, Strongly θ(Λ, p)-continuous functions, Int. J. Math. Comput. Sci., 19, no. 2, (2024), 475–479.
- [8] N. Viriyapong, C. Boonpok, On (Λ, p)-extremally disconnected spaces, Int. J. Math. Comput. Sci., 18, no. 2, (2023), 289–293.