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Abstract

The main goal here is to introduce another type of fuzzy normed

space which we call a convex fuzzy normed space. Moreover, we give

important properties of such a space.

1 Introduction

In 2012, Kider [1] defined new types of fuzzy normed spaces. Then, in 2017,
Kider and Kadhum [2] introduced the fuzzy norm for a fuzzy bounded lin-
ear operator on a fuzzy normed space. Later, in 2018, Kider and Ali [3]
introduced the notion of fuzzy absolute value and they investigated basic
properties of the finite dimensional fuzzy normed space. In 2019, Gheeab
and Kider [4] gave the definition of a general fuzzy normed space. In the
same year, Kadhum and Kider [5] presented the notion of a fuzzy compact
linear operator and studied its basic properties. In 2020, Kider and Khudhair
[6] proved some properties of fuzzy compact a-fuzzy normed space and finite
dimensional a-fuzzy normed space. In 2022, Khalaf and Kider [7] extended a
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linear operator on a-fuzzy normed space when it is fuzzy compact. In 2023,
Abbas and Kider [8] showed basic properties of a-fuzzy normed algebra.

2 The convex fuzzy absolute value and its

basic properties

Definition 2.1. [8] If U 6= ∅, then a fuzzy set D: U → [0,1] in U is a
function with 0 ≤ D(u) ≤ 1 for all u ∈ U .

Definition 2.2. Let AR: R →[0, 1] be a fuzzy set that satisfies:
(1)AR(δ) ∈ [0, 1],
(2)AR(γ) = 0 ⇐⇒ γ = 0,
(3)AR(γ).AR(δ) ≥ AR(γδ),
(4)σAR(γ) + µAR(δ) ≥ AR(γ + δ),
for all σ, µ ∈ [0, 1] with σ + µ =1 and for all γ, δ ∈ R.
Then (R, AR) is called a convex fuzzy absolute value space or simply c-FAVS.

Definition 2.3. If (R, AR) is a convex fuzzy absolute value space, then de-
fine AR(α)= AR(−α) for all α ∈ R and AR(1)=1.

Example 2.4. Define A|.|: R → [0, 1] by A|.|(δ) =

{ 1
|δ|

if δ 6= 0

0 if δ = 0

for all δ ∈ R. Then (R, A|.| ) is a convex fuzzy absolute value space.

Example 2.5. Let A|.|(α) =
|α|

1+|α|
for all α ∈ R, where (R,|.|) is the absolute

value space. Then (R, A|.| ) is a convex fuzzy absolute value space.

Definition 2.6. Let (R, AR) be a convex fuzzy absolute value space and let
{αk}

∞
k=1be a sequence in R. Then {αk}

∞
k=1 is convex fuzzy and approaches α ∈

R when k → ∞ if ∀ σ ∈ (0,1), ∃ N ∈ N such that AR(αk−α) < σ, for all k≥
N . We write limk→∞ αk = α or αk→α as k → ∞ or limk→∞AR(αk−α) = 0.

Theorem 2.7. Let (R, AR) be a convex fuzzy absolute value space and let
{αk}

∞
k=1 be a sequence in R such that αk→α and αk→β as k → ∞. Then

α=β.

Definition 2.8. Let (R, AR) be a convex fuzzy absolute value space and let
{αk}

∞
k=1 ∈ R, then {αk}

∞
k=1 is a convex fuzzy Cauchy sequence in R if ∀ σ ∈

(0,1), ∃ N ∈ N such that AR(αn−αm) < σ, ∀ n, m ≥ N .
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Theorem 2.9. Let (R, AR) be the convex fuzzy absolute value space and let
{αk}

∞
k=1be a sequence in R such that αk→α as k → ∞, then it is convex fuzzy

Cauchy.

Theorem 2.10. Let (R, AR) be a convex fuzzy absolute value space and
let {αk}

∞
k=1 be a sequence in R such that αk→α then all (αkn) ⊆ {αk}

∞
k=1

satisfying αkn→α.

Definition 2.11. Let (R, AR) be convex fuzzy absolute value space. The
sequence {σk}

∞
k=1 in R is said to be convex fuzzy bounded if there exists α ∈

[0,1] such that AR(σk) < α, for all k ∈ N.

Theorem 2.12. Let (R, AR) be a convex fuzzy absolute value space. If the
sequence {σk}

∞
k=1 in R is convex fuzzy approaches to the limit σ. Then it is

convex fuzzy bounded.

Proof. Suppose that {σk}
∞
k=1 in R is convex fuzzy and approaches the limit

σ as k → ∞. Then for every α ∈ (0, 1) there exists N ∈ N such that
AR(σk−σ) < α, for all k ≥ N . This implies that AR(σk) = AR(σ + σk−σ) ≤
γAR(σ) + δAR(σk−σ) < γAR(σ) + δα, where γ + δ=1. Now put θ = AR(σ),
for some θ ∈ [0, 1]. Then AR(σk) < γθ+ δα. Choose µ ∈ [0, 1] with γθ+
δα < µ. Hence AR(σk) < µ, for each k ∈ N. Thus {σk}

∞
k=1 is convex fuzzy

bounded.

Theorem 2.13. Let (R, AR) be a convex fuzzy absolute value space and let
{σk}

∞
k=1, {θk}

∞
k=1 be two sequences in R. If {σk}

∞
k=1 is convex fuzzy approaches

σ as k → ∞ and {θk}
∞
k=1 is convex fuzzy and approaches θ as k → ∞. Then

(1) {σk+θk}
∞
k=1 is convex fuzzy and approaches σ + θ.

(2) {βσk}
∞
k=1 is convex fuzzy and approaches βσ, for any 0 6= β ∈ R.

Proof. The proof is clear and hence is omitted.

Theorem 2.14. Let (R, AR) be a convex fuzzy absolute value space and
let {σk}

∞
k=1, {θk}

∞
k=1 be two sequences in R. If {σk}

∞
k=1 is convex fuzzy and

approaches σ as k → ∞ and {θk}
∞
k=1 is convex fuzzy and approaches θ as

k → ∞. Then {σkθk}
∞
k=1 is convex fuzzy and approaches σθ as k → ∞.

Proof. Since {σk}
∞
k=1 is convex fuzzy approaches the limit σ, for every α

∈ (0, 1), there exists N1 ∈ N such that AR(σk−σ) < α for all k≥ N1. Also,
since {θk}

∞
k=1 is fuzzy and approaches the limit θ, for every ε ∈ (0, 1), there

exists N2 ∈ N such that AR(θk−θ) < ε, for all k ≥ N2. Now, choose N = min{
N1, N2 }. Then, for each k ≥ N, we have
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AR(σkθk−σθ) = AR(σkθk−σθk + σθk − σθ) ≤ γAR(σkθk−σθk) + δAR(σθk −
σθ), where γ+ δ=1. Now, AR(σkθk−σθ) ≤ γAR[(σk−σ)θk] + δAR[σ(θk − θ)]
≤ γAR(σk−σ)AR(θk) + δAR(σ)AR(θk − θ) ≤ γσAR(θk) + δAR(σ) θ. Put
AR(θk)=ρ and AR(σ)=τ and choose ε ∈ (0, 1) such that (γ σρ + δ τ θ) < ε.
Thus AR(σkθk−σθ) < ε, for each k ≥ N.
Hence {σkθk}

∞
k=1 is convex fuzzy and approaches the limit σθ as k → ∞.

3 Properties of Convex Fuzzy Normed Space

Definition 3.1. Let U be a vector space over R, let (R, AR) be a convex
fuzzy absolute value space, and let N: U →I be a fuzzy set. If N satisfies:
(1) 0≤ N(u) ≤ 1,
(2) N(u) =0 if and only if u=0,
(3) N(αu) ≤ AR(α) N(u) for all 0 6= α ∈ R,
(4) N(u + v) ≤ γN(u) + δN(v),
where γ + δ=1, for all u, v ∈ U . Then (U , N) is called a convex fuzzy
normed space.

Remark 3.2. (1) If δ, σ ∈ [0, 1], then (αδ +(1−α)σ) ∈ [0, 1], for any α ∈
[0, 1]. In general, if σ1, σ2, . . . ,σk ∈ [0, 1], then (α1σ1 + α2σ2 + . . .+ αkσk)
∈ [0, 1] for any α1, α2, . . . ,αk ∈ [0, 1] with α1+ α2+ . . .+ αk=1.

Proof. Since αδ ≤ α and (1−α)σ ≤ (1−α), (αδ +(1−α)σ) ≤ α + (1−α)=1.
Similarly, since α1σ1 ≤ α1, α2σ2 ≤ α2, . . . ., αkσk ≤ αk, (α1σ1 + α2σ2+ . . .+
αkσk) ≤ α1+ α2+ . . .+ αk=1.
(2) By induction, it is clear that N(u1+ u2+ . . .+ uk)≤ δ1N1(u1) +δ2N2(u2)
+, . . . , +δkNk(uk) for all u1, u2, . . . ,uk ∈ U where δ1+ δ2+ . . . .+δ3=1.

Example 3.3. Define N‖.‖:U →I by N‖.‖(u) =

{ 1
‖u‖

if u 6= 0

0 if u = 0

for all u ∈ U . Then (U , N‖.‖) is convex fuzzy normed space and is called
the convex fuzzy normed space induced by ‖.‖.

Proof. We show that all conditions of Definition 3.1 are satisfied.
(1) It is clear that N‖.‖(u) ∈ I.
(2) N‖.‖(u)=0 if and only if u=0 follows immediately from the definition of
N‖.‖.
(3) AR(α) ·N‖.‖(u) = 1

|α|
1

‖u‖
= 1

‖αu‖
= N‖.‖(αu).

(4) γ N‖.‖(u) + δN‖.‖(v) = γ

‖u‖
+ δ

‖v‖
= γ‖v‖+δ‖u‖

‖u‖‖v‖
≥ 1

‖u+v‖
= N‖.‖(u+ v).

Hence (U , N‖.‖) is a convex fuzzy normed space when γ+δ=1.
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Theorem 3.4. If we define N: R →I by N(α)= AR(α,) for all α ∈ R, then
(R, N) is a convex fuzzy normed space.

Proof. We show that all conditions of Definition 3.1 are satisfied:
(1) It is clear that N(α) ∈ I, for all α ∈ R.
(2) N(α)=0 if and only if AR(α)=0 if and only if α =0.
(3) N(αβ) = AR(αβ) ≤ AR(α) . AR(β) = N(α) N(β) for all 0 6= α ∈ R.
(4) N(α+ β) = AR(α + β) ≤ γAR(α) + δAR(β) = γN(α) + δN(β).
where γ + δ=1. Hence (R, N) is a convex fuzzy normed space.

Example 3.5. Let U = C[a, b]. Let N(g) = maxα∈[a, b] AR[g(α)], for all g
∈ U . Then (U , N) is a convex fuzzy normed space.

Proof. We show that all conditions of Definition 3.1 are satisfied:
(1) It is clear that N(g) ∈I for all g ∈ U .
(2) N(g) = 0 if and only if maxα∈[a, b] AR[g(α)]= 0 if and only if AR[g(α)]
= 0 for all α ∈ [a, b] if and only if g(α)=0, for all α ∈ [a, b] if and only if g =0.
(3)N(σg) = maxα∈[a, b]AR[σg(α)] ≤ AR(σ).maxα∈[a, b]AR[g(α)] = AR(σ).N(g),
for all 0 6= σ ∈ R.
(4) N

g+k
= maxα∈[a,b]AR[(g+k)(α)] = maxα∈[a,b]AR[(g(α)+k(α)] ≤ maxα∈[a, b]γAR

[(g(α)]+

maxα∈[a, b]δAR[(k(α)],where γ+ δ=1. Now, N(g+k) ≤ γmaxα∈[a, b]AR[(g(α)]+
δmaxα∈[a, b]AR[(k(α)] = γ N(g) + δN(k). Hence (U , N) is a convex fuzzy
normed space.

Example 3.6. Define N‖.‖(u) = ‖u‖
1+‖u‖

, for all u ∈ U when (U , ‖.‖) is a

normed space. Then (U , N‖.‖) is a convex fuzzy normed space.

Proof. To prove that N‖.‖ satisfies all the conditions of Definition 3.1,
(1) 0 ≤ N‖.‖(u) ≤ 1 for all u ∈ U ;

(2) u = 0 ⇐⇒ ‖u‖ = 0 ⇐⇒ ‖u‖
1+‖u‖

= 0 ⇐⇒ N‖.‖(u) = 0;

(3) N‖.‖(σu) =
‖σu‖

1+‖σu‖
= |σ|‖u‖

1+|σ|‖u‖
≤ [ |σ|

1+|σ|
].[ ‖u‖

1+‖u‖
] = A|.|(σ). N‖.‖(u);

(4) To prove N‖.‖(u+ v) ≤ αN‖.‖(u) + βN‖.‖(v), for all u, v, ∈ U ,
put β=(1−α). Then

N‖.‖(u + v) = 1 − 1
1+‖u+ v‖

≤ 1 − 1
1+α‖u‖+(1−α)‖v‖

≤ α‖u‖+(1−α)‖v‖
1+α‖u‖+(1−α)‖v‖

≤

αN‖.‖(u) + βN‖.‖(v). Thus (U , N‖.‖) is a convex fuzzy normed space.

Theorem 3.7. Let (U1, N1) and (U2, N2) be convex fuzzy normed spaces
and let U = U1 × U2. Then (U , N) is a convex fuzzy normed space, where
N[(u1, u2)] = γN1(u1) + δN2(u2), for all (u1, u2) ∈ U where γ + δ=1.
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Proof. We show that all conditions of Definition 3.1 are satisfied.
(1) Since 0≤ N1(u1) ≤ 1 and 0≤ N2(u2) ≤ 1, 0≤ N[(u1, u2)] ≤ 1
(2)N[(u1, u2)]=0 if and only if γN1(u1) + δN2(u2)=0 if and only if N1(u1)=0
and N2(u2)=0 if and only if u1=0 and u2=0 if and only if (u1, u2) = (0, 0)
(3)N[α(u1, u2)]= n[(αu1, αu2)] = γN1(αu1) + δN2(αu2)≤ AR(α). γN1(αu1)+
AR(α). δN2(u2) ≤ AR(α) [γN1(u1) + δN2(u2)]=a(c). n[(u1, u2)]
(4) N[(u1, u2)+(v1, v2)] = N[(u1+v1)+(u2+v2)] = γN1(u1+v1)+ δN2(u2+
v2) ≤ γ[σN1(u1) + θN1(v1)] + δ[σN2(u2) + θN2(v2)],
where γ +δ=1 and σ + θ=1.
Now, N[(u1, u2) + (v1, v2)] ≤ σ[γN1(u1) + δN2(u2)] + θ[γN1(v1) + δN2(v2)] =
σN[(u1, u2)]+θN[(v1, v2)]. Hence (U , N) is a convex fuzzy normed space.

Now, the following corollaries follow easily.

Corollary 3.8. If (U1, N1), (U2, N2), . . . , (Uk, Nk) are algebra fuzzy normed
spaces, then (U , N) is convex fuzzy normed space, where U= U1 × U2 × . . .
× Uk and N[(u1, u2, . . . , uk)]= δ1N1(u1) +δ2 N2(u2) + . . . +δk Nk(uk),
for all(u1, u2, . . . ,uk) ∈ U where δ1+ δ2+ . . . .+δ3=1.

Corollary 3.9. If (U , N) is a convex fuzzy normed space, then (Uk, NU)
is a convex fuzzy normed space, where Uk= U × U×. . . .× U (k-times) and
NU [(u1, u2, . . . ,uk)]= δ1N(u1) +δ2 N(u2) + . . . +δk N(uk) for all (u1, u2,
. . . ,uk) ∈ U , where δ1+ δ2+ . . . .+δk=1.

Definition 3.10. Let (U , N) be a convex fuzzy normed space and let (uk)
be a sequence in U . We say that (uk) is convex fuzzy convergent to the limit
u as k approaches to ∞ if, for every α ∈ (0, 1), there exists N ∈ N such that
N(uk−u) < α, for all k ≥ N. If (uk) is convex fuzzy convergent to the limit
u, we write limk→∞ uk =u or uk→ u as k → infty or limn→∞ N(uk−u) =0.

Definition 3.11. Suppose that (U , N) is a convex fuzzy normed space. Put
cfb(u, α)= { v ∈ U : N(u − v) < α } and cfb[u, α]= { v ∈ U : N(u − v)
< α}. Then cfb(u, α) and cfb[u, α] is called convex open and convex closed
fuzzy ball with the center u ∈ U and radius α, with α ∈ (0, 1).

Definition 3.12. Let (U , N) be a convex fuzzy normed space and let (uk)
be a sequence in U . We say that (uk) is a convex fuzzy Cauchy sequence in
U if, for every ε ∈ (0, 1), there exists N ∈ N such that N(uk−um) < ε, for
all k,m ≥N.

Lemma 3.13. Let (U ,N) be a convex fuzzy normed space and define AR[N
(u)] = N (u), for all u, v ∈ U . Then AR[N (u)−N(v)] ≤ N(u− v), for all
u, v ∈ U .
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Lemma 3.14. If (U , N) is a convex fuzzy normed space, then N(u − v) =
N (v − u), for all u, v ∈ U .

Proof. N(u− v) = N[(−1)(v− u)] ≤ AR(−1). N (v− u) =AR(1). N (v− u)
= N (v−u); that is, N(u− v) ≤ N (v−u). Similarly, N (v−u) ≤ N(u− v),
from these two inequalities we conclude that N (u − v) = N (v − u), for all
u, v ∈ U .

Definition 3.15. Let U 6= ∅ and if the fuzzy set M: U ×U →[0, 1] satisfies
(1) W(u, v) ∈ (0, 1),
(2) u = v ⇐⇒ M(u, v) = 0, (3) M(u, v) = M(v, u),
(4) αM(u, w)+βM(w, v)≥ M(u, v), for all α, β ∈ [0, 1] with α + β =1 and
for all u, v, w ∈ U .
Then (U , M) is a convex fuzzy metric space or a c-fuzzy metric space or
simply a c-FMS.

The proof of the next result is clear and hence is omitted.

Theorem 3.16. If (U , N) is a convex fuzzy normed space, then (U , MN) is
a convex fuzzy metric space, where MN(u, v) = N(u− v), for all u, v ∈ U .
We call (U , MN) the convex fuzzy metric space induced by N.

Definition 3.17. If (U , N) is a convex fuzzy normed space, then W ⊆ U
is known as convex Fuzzy open if cfb(w,α ) ⊆ W, for any arbitrary w ∈ W
and for some α ∈(0, 1). Also, D ⊆ U is known as convex fuzzy closed if DC

is fuzzy open. Moreover, the convex fuzzy closure D of D, is defined to be
the smallest fuzzy closed set containing D. Also, D ⊆ U is known as convex
fuzzy dense in U if whenever D = U .

Theorem 3.18. If cfb(u, α) is a convex open fuzzy ball in a convex fuzzy
normed space (U , N), then it is a convex fuzzy open set.

Proof. Let cfb(u, α) be a convex open fuzzy ball, where u ∈ U and α ∈ (0,
1). Let v ∈ cfb(u, α). So N(u− v) < α. Let β = N(u− v). So β < α. Then
there is σ ∈ (0, 1) such that (γ β +δ σ ) < α. Now, consider the convex open
fuzzy ball cfb(v, σ). We show that cfb(v, σ) ⊆ cfb(u, α). Let z ∈ cfb(v, σ).
So N(v−z) < σ. Hence N(u−z) ≤ γ N(u−v) +δ N(v−z), where γ +δ=1.
Now, N(u− z) ≤ γ β +δ σ and so z ∈ cfb(u, α); that is, cfb(v, σ) ⊆ cfb(u,
α). Therefore, cfb(u, α) is a convex fuzzy open set.

Theorem 3.19. Let (U , N) be a convex fuzzy normed space.
(1) If { Ui: i ∈ I } is a family of convex fuzzy open sets, then ∪i∈I Ui is fuzzy
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open set.
(2) If U1, U2,. . . , Uk represent a finite number of convex fuzzy open set, then
∩k
i=1Ui is fuzzy open set.

Proof.
(1) Suppose that { Ui: i∈ I } is a family of convex fuzzy open sets with U =
∪i∈I Ui. Let U ∈ U . Then U ∈ ∪i∈I Ui. So w ∈ Ui, for some i ∈ I. Since Ui is
a convex fuzzy open set, ∃ 0< σ < 1 satisfying cfb(U , σ) ⊂ Ui. Thus cfb(U ,
σ) ⊂ Ui ⊆ ∪i∈I Ui = W; that is, U is a convex fuzzy open set.
(2) Let U1, U2,. . . ., Uk be convex fuzzy open sets and put V = ∩k

i=1Ui. We
show that V is a convex fuzzy open set. Let v ∈ V. Then v ∈ Ui, for each
1 ≤ i ≤ k. Hence ∃ 0 ≤ αi ≤ 1 satisfying cfb(v, αi) ⊂ Ui since Ui is a convex
fuzzy open ∀i = 1, 2, . . ., k. Let α = min{ αi : 1 ≤ i ≤ k }. So α ≤ αi, ∀ 1
≤ i ≤ k. So cfb(v, α) ⊂ Ui for all 1 ≤ i ≤ k. Therefore, cfb(v, α) ⊆ ∩k

i=1Ui =
V, thus V is a convex fuzzy open set.

Definition 3.20. [8] If X 6= ∅, then a collection J of fuzzy subsets of X is
a fuzzy topology or simply FT on X if:
(1) X and ∅ belongs to J,
(2) if {Bi: i∈I }∈ J, then ∪i∈I Bi ∈ J,
(3) if B1, B2,. . . ., Bk ∈ J, then ∩k

i=1Bi ∈ J.

Theorem 3.21. If (U , N) is a convex fuzzy normed space, then it is a fuzzy
topological space.

Proof. If (U , N) is a convex fuzzy normed space, then putting Jm= { W ⊂ U :
w ∈ W ⇐⇒ ∃ α ∈ (0, 1) with cfb(w, α) ⊂ W }. Therefore, Jm must be a
fuzzy topology on U .
(1) ∅, U ∈ Jm;
(2) Suppose that { Bi: i∈I } ∈ Jm, then ∪i∈I Bi ∈ Jm by Definition 3.20.
(3) Let B1, B2,. . . ., Bk ∈ Jmthen ∩k

i=1Bi ∈ Jm by Definition 3.20.
Hence (U , Jm) is a fuzzy topological space.

Definition 3.22. A convex fuzzy normed space (U , N) is said to be a convex
fuzzy complete if for every convex fuzzy Cauchy sequence (uk) in U , uk → u
∈ U as k → infty.

Theorem 3.23. In a convex fuzzy normed space (U , N) if uk →u ∈ U , as
k → infty, then (uk) is convex fuzzy Cauchy.

Proof. Suppose that (uk) in U and uk → u ∈ U as k → infty. Then, for
any σ ∈(0, 1), we can find N with N(uk − u) < σ , for all k ≥ N. Now, for
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each m, k ≥ N N(uk− um) ≤ αN(uk− u) + βN(u− um), where α + β=1.
Therefore, N(uk− um) < ασ+ βσ = σ. Hence (uk) is a convex fuzzy Cauchy
sequence.

Theorem 3.24. In a convex fuzzy normed space (U , N), if (uk) ∈ U with
uk → u and (dk)∈ U with N (uk− dk) → 0 as k → ∞, then dk → u.

Proof. Since uk → u, N(uk− u) → 0 as k → ∞. Now, N(dk − u) ≤ αN(dk−
uk) + βN(uk− u) → 0 as k → ∞, where α + β=1. Hence dk → u, as
k → infty.

Theorem 3.25. Let (U , N) be a convex fuzzy normed space with D ⊂ U .
Then d∈ D if and only if there is (dk) ∈ D with dk →d as k → ∞.

Proof. Suppose that d ∈ D. If d ∈ D, then choose the sequence of that
type is (d, d, . . ., d, . . .). If d /∈ D, then construct the sequence (dk) ∈ D by
N(dk−d)¡ 1

k
, for each k = 1, 2, 3, . . .. Then the convex fuzzy ball cfb(d, 1

k
)

contains dk ∈ D and dk →d because limk→∞N(dk − d) = 0.
Conversely, if (dk) in D and dk →d, then d ∈ D or every convex fuzzy ball
of d containing points dk 6= d, so that d is an accumulation point of of D.
Hence d ∈ D by the definition of closure.

Theorem 3.26. Let (U , N) be a convex fuzzy normed space with D ⊂ U .
Then D= U if and only if for any u ∈ U there is d ∈ D with N(u− d) < α,
for some α ∈ (0, 1).

Proof. Suppose that D is fuzzy dense in U and u ∈ U . So u ∈ D and by
Theorem 3.25 there is a sequence (dn) ∈ D such that dn →u; that is, for any
α ∈ (0, 1), we can find N with N(dk −u) < α for all k ≥ N. Take d = dN.
So N(u− d) < α.
Conversely, to prove D is fuzzy dense in U , we have to show that D ⊆ D.
Let u ∈ U . Then there is dk ∈ D such that N(dk −u) < 1

k
. Now, take 0 < σ

< 1 such that 1
k
< σ, for each k ≥ N for N ∈ N. Hence we have a sequence

(dk) ∈ D such that N(dk -u) < 1
k
< σ for all k ≥ N ; that is, dk →u so u ∈

D.

Theorem 3.27. If (U1, N1) and (U2, N2) are two convex fuzzy normed
spaces, then (U , N) is a convex fuzzy complete convex fuzzy normed space if
and only if (U1,N1) and (U2, N2) are fuzzy complete, where U= U1 × U2 and
N[(u1, u2)] = γN1(u1) + δN2(u2), for all (u1, u2) ∈ U , where γ + δ=1.
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Proof. Let (U1, N1) and (U2, N2) be convex fuzzy complete convex fuzzy
normed spaces. Let (uk) be convex fuzzy Cauchy sequence in U then (uk) =
( u1k, u2k), where (u1k) ∈ U1 and (u2k) ∈ U2. Hence N(uk − um) convex fuzzy
converges to zero as k → ∞ and m → ∞ this implies that [γN1(u1k−u1m) +
δN2(u2k − u2m)] is convex fuzzy convergent to zero as k → ∞ and m → ∞.
Hence N1(u1k−u1m) is convex fuzzy convergent to zero in (U1, N1) as k → ∞
and m → ∞ and N2(u2k − u2m) is convex fuzzy convergent to zero in (U2,
N2) as k → ∞ and m → ∞. Therefore, (u1k) is a fuzzy Cauchy sequence
in (U1, N1) and (u2k) is a fuzzy Cauchy sequence in (U2, N2). But (U1, N1)
and (U2, N2,) are convex fuzzy complete. So there is u1 ∈ U1 and u2 ∈ U2

such that (u1k) convex fuzzy converges to u1 ∈ U1 and (u2k) convex fuzzy
converges to u2 ∈ U2. Put u = (u1, u2). Then u ∈ U and (uk) is convex
fuzzy convergent to u ∈ U since N(uk −u)= N[(u1k, u2k) −(u1, u2)]= N

[(u1k − u1)+ (u2k − u2)] = γN1[(u1k − u1)] + δN2[(u2k − u2)] By taking the
limit on both sides as k → ∞, we have N(uk −u) →0.
The proof of the converse is similar and hence is omitted.

The following two corollaries follow easily.

Corollary 3.28. If (U1, N1), (U2, N2), . . . , (Uk, Nk) are convex fuzzy
normed spaces, then (U , N) is convex fuzzy complete convex fuzzy normed
space if and only if (U1, N1), (U2, N2), . . . , (Uk, Nk) are convex fuzzy com-
plete, where U= U1 × U2 × . . . × Uk and N[(u1, u2, . . . , uk)]=δ1N1(u1) +δ2
N2(u2) + . . . + δkNk(uk) for all (u1, u2, . . . ,uk) ∈ U , where δ1+δ2+. . .+δk=1.

Corollary 3.29. Let (U , N) be a convex fuzzy normed space. Then (Uk,
Nk) is a convex fuzzy complete convex fuzzy normed space if and only if (U ,
N) is convex fuzzy complete, where Uk = U × U × . . . × U [k-times], where
k ∈ N and Nk[(u1, u2, . . . , uk)]=δ1 N (u1) + δ2N(u2) + . . . + δkN (uk),
for all (u1, u2, . . . ,uk) ∈ Uk, where δ1+δ2+. . .+δk=1.

4 Conclusion

In this paper, we opened a new line of research in fuzzy functional analysis
by introducing a new fuzzy metric space, called a convex fuzzy metric space.
Moreover, we introduced the notion of convex fuzzy absolute value which is
a generalization of the ordinary absolute value.
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