International Journal of Mathematics and Computer Science, **19**(2024), no. 2, 345–355

(M CS)

Some properties of convex fuzzy normed space

Hawraa Yousif Daher, Jehad Ramadan Kider

Branch of Mathematics and Computer Applications Department of Applied Sciences University of Technology-Iraq Baghdad, Iraq

email: as.22.19@grad.uotechnology.edu.iq, jehad.r.kider@uotechnology.edu.iq

(Received August 26, 2023, Accepted September 26, 2023, Published November 10, 2023)

Abstract

The main goal here is to introduce another type of fuzzy normed space which we call a convex fuzzy normed space. Moreover, we give important properties of such a space.

1 Introduction

In 2012, Kider [1] defined new types of fuzzy normed spaces. Then, in 2017, Kider and Kadhum [2] introduced the fuzzy norm for a fuzzy bounded linear operator on a fuzzy normed space. Later, in 2018, Kider and Ali [3] introduced the notion of fuzzy absolute value and they investigated basic properties of the finite dimensional fuzzy normed space. In 2019, Gheeab and Kider [4] gave the definition of a general fuzzy normed space. In the same year, Kadhum and Kider [5] presented the notion of a fuzzy compact linear operator and studied its basic properties. In 2020, Kider and Khudhair [6] proved some properties of fuzzy compact a-fuzzy normed space and finite dimensional a-fuzzy normed space. In 2022, Khalaf and Kider [7] extended a

Key words and phrases: Convex fuzzy absolute value space, Convex fuzzy normed space, Convex fuzzy convergence of sequences, Convex fuzzy open ball, Convex fuzzy open set.

AMS Subject Classifications: 16D50. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net linear operator on a-fuzzy normed space when it is fuzzy compact. In 2023, Abbas and Kider [8] showed basic properties of a-fuzzy normed algebra.

2 The convex fuzzy absolute value and its basic properties

Definition 2.1. [8] If $\mathcal{U} \neq \emptyset$, then a fuzzy set $\mathcal{D}: \mathcal{U} \rightarrow [0,1]$ in \mathcal{U} is a function with $0 \leq \mathcal{D}(u) \leq 1$ for all $u \in \mathcal{U}$.

Definition 2.2. Let $A_{\mathbb{R}}: \mathbb{R} \to [0, 1]$ be a fuzzy set that satisfies: $(1)A_{\mathbb{R}}(\delta) \in [0, 1],$ $(2)A_{\mathbb{R}}(\gamma) = 0 \iff \gamma = 0,$ $(3)A_{\mathbb{R}}(\gamma).A_{\mathbb{R}}(\delta) \ge A_{\mathbb{R}}(\gamma\delta),$ $(4)\sigma A_{\mathbb{R}}(\gamma) + \mu A_{\mathbb{R}}(\delta) \ge A_{\mathbb{R}}(\gamma + \delta),$ for all $\sigma, \mu \in [0, 1]$ with $\sigma + \mu = 1$ and for all $\gamma, \delta \in \mathbb{R}.$ Then $(\mathbb{R}, A_{\mathbb{R}})$ is called a convex fuzzy absolute value space or simply c-FAVS.

Definition 2.3. If $(\mathbb{R}, A_{\mathbb{R}})$ is a convex fuzzy absolute value space, then define $A_{\mathbb{R}}(\alpha) = A_{\mathbb{R}}(-\alpha)$ for all $\alpha \in \mathbb{R}$ and $A_{\mathbb{R}}(1)=1$.

Example 2.4. Define $A^{|.|} \colon \mathbb{R} \to [0,1]$ by $A^{|.|}(\delta) = \begin{cases} \frac{1}{|\delta|} & \text{if } \delta \neq 0 \\ 0 & \text{if } \delta = 0 \end{cases}$ for all $\delta \in \mathbb{R}$. Then (\mathbb{R} , $A^{|.|}$) is a convex fuzzy absolute value space.

Example 2.5. Let $A_{|.|}(\alpha) = \frac{|\alpha|}{1+|\alpha|}$ for all $\alpha \in \mathbb{R}$, where $(\mathbb{R}, |.|)$ is the absolute value space. Then $(\mathbb{R}, A_{|.|})$ is a convex fuzzy absolute value space.

Definition 2.6. Let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space and let $\{\alpha_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} . Then $\{\alpha_k\}_{k=1}^{\infty}$ is convex fuzzy and approaches $\alpha \in \mathbb{R}$ when $k \to \infty$ if $\forall \sigma \in (0,1), \exists \mathcal{N} \in \mathbb{N}$ such that $A_{\mathbb{R}}(\alpha_k - \alpha) < \sigma$, for all $k \geq \mathcal{N}$. We write $\lim_{k\to\infty} \alpha_k = \alpha$ or $\alpha_k \to \alpha$ as $k \to \infty$ or $\lim_{k\to\infty} A_{\mathbb{R}}(\alpha_k - \alpha) = 0$.

Theorem 2.7. Let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space and let $\{\alpha_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} such that $\alpha_k \rightarrow \alpha$ and $\alpha_k \rightarrow \beta$ as $k \rightarrow \infty$. Then $\alpha = \beta$.

Definition 2.8. Let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space and let $\{\alpha_k\}_{k=1}^{\infty} \in \mathbb{R}$, then $\{\alpha_k\}_{k=1}^{\infty}$ is a convex fuzzy Cauchy sequence in \mathbb{R} if $\forall \sigma \in (0,1), \exists \mathcal{N} \in \mathbb{N}$ such that $A_{\mathbb{R}}(\alpha_n - \alpha_m) < \sigma, \forall n, m \geq \mathcal{N}$.

Theorem 2.9. Let $(\mathbb{R}, A_{\mathbb{R}})$ be the convex fuzzy absolute value space and let $\{\alpha_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} such that $\alpha_k \rightarrow \alpha$ as $k \rightarrow \infty$, then it is convex fuzzy Cauchy.

Theorem 2.10. Let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space and let $\{\alpha_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} such that $\alpha_k \rightarrow \alpha$ then all $(\alpha_{k_n}) \subseteq \{\alpha_k\}_{k=1}^{\infty}$ satisfying $\alpha_{k_n} \rightarrow \alpha$.

Definition 2.11. Let $(\mathbb{R}, A_{\mathbb{R}})$ be convex fuzzy absolute value space. The sequence $\{\sigma_k\}_{k=1}^{\infty}$ in \mathbb{R} is said to be convex fuzzy bounded if there exists $\alpha \in [0,1]$ such that $A_{\mathbb{R}}(\sigma_k) < \alpha$, for all $k \in \mathbb{N}$.

Theorem 2.12. Let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space. If the sequence $\{\sigma_k\}_{k=1}^{\infty}$ in \mathbb{R} is convex fuzzy approaches to the limit σ . Then it is convex fuzzy bounded.

Proof. Suppose that $\{\sigma_k\}_{k=1}^{\infty}$ in \mathbb{R} is convex fuzzy and approaches the limit σ as $k \to \infty$. Then for every $\alpha \in (0, 1)$ there exists $\mathbb{N} \in \mathbb{N}$ such that $A_{\mathbb{R}}(\sigma_k - \sigma) < \alpha$, for all $k \ge \mathbb{N}$. This implies that $A_{\mathbb{R}}(\sigma_k) = A_{\mathbb{R}}(\sigma + \sigma_k - \sigma) \le \gamma A_{\mathbb{R}}(\sigma) + \delta A_{\mathbb{R}}(\sigma_k - \sigma) < \gamma A_{\mathbb{R}}(\sigma) + \delta \alpha$, where $\gamma + \delta = 1$. Now put $\theta = A_{\mathbb{R}}(\sigma)$, for some $\theta \in [0, 1]$. Then $A_{\mathbb{R}}(\sigma_k) < \gamma \theta + \delta \alpha$. Choose $\mu \in [0, 1]$ with $\gamma \theta + \delta \alpha < \mu$. Hence $A_{\mathbb{R}}(\sigma_k) < \mu$, for each $k \in \mathbb{N}$. Thus $\{\sigma_k\}_{k=1}^{\infty}$ is convex fuzzy bounded.

Theorem 2.13. Let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space and let $\{\sigma_k\}_{k=1}^{\infty}, \{\theta_k\}_{k=1}^{\infty}$ be two sequences in \mathbb{R} . If $\{\sigma_k\}_{k=1}^{\infty}$ is convex fuzzy approaches σ as $k \to \infty$ and $\{\theta_k\}_{k=1}^{\infty}$ is convex fuzzy and approaches θ as $k \to \infty$. Then (1) $\{\sigma_k + \theta_k\}_{k=1}^{\infty}$ is convex fuzzy and approaches $\sigma + \theta$. (2) $\{\beta\sigma_k\}_{k=1}^{\infty}$ is convex fuzzy and approaches $\beta\sigma$, for any $0 \neq \beta \in \mathbb{R}$.

Proof. The proof is clear and hence is omitted.

Theorem 2.14. Let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space and let $\{\sigma_k\}_{k=1}^{\infty}, \{\theta_k\}_{k=1}^{\infty}$ be two sequences in \mathbb{R} . If $\{\sigma_k\}_{k=1}^{\infty}$ is convex fuzzy and

approaches σ as $k \to \infty$ and $\{\theta_k\}_{k=1}^{\infty}$ is convex fuzzy and approaches θ as $k \to \infty$. Then $\{\sigma_k \theta_k\}_{k=1}^{\infty}$ is convex fuzzy and approaches $\sigma \theta$ as $k \to \infty$.

Proof. Since $\{\sigma_k\}_{k=1}^{\infty}$ is convex fuzzy approaches the limit σ , for every $\alpha \in (0, 1)$, there exists $N_1 \in \mathbb{N}$ such that $A_{\mathbb{R}}(\sigma_k - \sigma) < \alpha$ for all $k \geq N_1$. Also, since $\{\theta_k\}_{k=1}^{\infty}$ is fuzzy and approaches the limit θ , for every $\varepsilon \in (0, 1)$, there exists $N_2 \in \mathbb{N}$ such that $A_{\mathbb{R}}(\theta_k - \theta) < \varepsilon$, for all $k \geq N_2$. Now, choose $N = min\{N_1, N_2\}$. Then, for each $k \geq N$, we have

H. Y. Daher, J. R. Kider

 $\begin{aligned} A_{\mathbb{R}}(\sigma_{\mathbf{k}}\theta_{\mathbf{k}}-\sigma\theta) &= A_{\mathbb{R}}(\sigma_{\mathbf{k}}\theta_{\mathbf{k}}-\sigma\theta_{\mathbf{k}}+\sigma\theta_{\mathbf{k}}-\sigma\theta) \leq \gamma A_{\mathbb{R}}(\sigma_{\mathbf{k}}\theta_{\mathbf{k}}-\sigma\theta_{\mathbf{k}}) + \delta A_{\mathbb{R}}(\sigma\theta_{\mathbf{k}}-\sigma\theta) \\ \sigma\theta, \text{ where } \gamma+\delta=1. \text{ Now, } A_{\mathbb{R}}(\sigma_{\mathbf{k}}\theta_{\mathbf{k}}-\sigma\theta) \leq \gamma A_{\mathbb{R}}[(\sigma_{\mathbf{k}}-\sigma)\theta_{\mathbf{k}}] + \delta A_{\mathbb{R}}[\sigma(\theta_{\mathbf{k}}-\theta)] \\ \leq \gamma A_{\mathbb{R}}(\sigma_{\mathbf{k}}-\sigma)A_{\mathbb{R}}(\theta_{\mathbf{k}}) + \delta A_{\mathbb{R}}(\sigma)A_{\mathbb{R}}(\theta_{\mathbf{k}}-\theta) \leq \gamma \sigma A_{\mathbb{R}}(\theta_{\mathbf{k}}) + \delta A_{\mathbb{R}}(\sigma) \theta. \text{ Put} \\ A_{\mathbb{R}}(\theta_{\mathbf{k}})=\rho \text{ and } A_{\mathbb{R}}(\sigma)=\tau \text{ and choose } \varepsilon \in (0,1) \text{ such that } (\gamma \sigma \rho + \delta \tau \theta) < \varepsilon. \\ \text{ Thus } A_{\mathbb{R}}(\sigma_{\mathbf{k}}\theta_{\mathbf{k}}-\sigma\theta) < \varepsilon, \text{ for each } k \geq N. \end{aligned}$

Hence $\{\sigma_k \theta_k\}_{k=1}^{\infty}$ is convex fuzzy and approaches the limit $\sigma \theta$ as $k \to \infty$. \Box

3 Properties of Convex Fuzzy Normed Space

Definition 3.1. Let \mathcal{U} be a vector space over \mathbb{R} , let $(\mathbb{R}, A_{\mathbb{R}})$ be a convex fuzzy absolute value space, and let $\mathfrak{N}: \mathcal{U} \to I$ be a fuzzy set. If \mathfrak{N} satisfies: (1) $0 \leq \mathfrak{N}(u) \leq 1$, (2) $\mathfrak{N}(u) = 0$ if and only if u = 0, (3) $\mathfrak{N}(\alpha u) \leq A_{\mathbb{R}}(\alpha) \mathfrak{N}(u)$ for all $0 \neq \alpha \in \mathbb{R}$, (4) $\mathfrak{N}(u + v) \leq \gamma \mathfrak{N}(u) + \delta \mathfrak{N}(v)$, where $\gamma + \delta = 1$, for all $u, v \in \mathcal{U}$. Then $(\mathcal{U}, \mathfrak{N})$ is called a convex fuzzy normed space.

Remark 3.2. (1) If δ , $\sigma \in [0, 1]$, then $(\alpha \delta + (1-\alpha)\sigma) \in [0, 1]$, for any $\alpha \in [0, 1]$. In general, if $\sigma_1, \sigma_2, \ldots, \sigma_k \in [0, 1]$, then $(\alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \ldots + \alpha_k \sigma_k) \in [0, 1]$ for any $\alpha_1, \alpha_2, \ldots, \alpha_k \in [0, 1]$ with $\alpha_1 + \alpha_2 + \ldots + \alpha_k = 1$.

Proof. Since $\alpha \delta \leq \alpha$ and $(1-\alpha)\sigma \leq (1-\alpha)$, $(\alpha \delta + (1-\alpha)\sigma) \leq \alpha + (1-\alpha)=1$. Similarly, since $\alpha_1\sigma_1 \leq \alpha_1, \alpha_2\sigma_2 \leq \alpha_2, \ldots, \alpha_k\sigma_k \leq \alpha_k, (\alpha_1\sigma_1 + \alpha_2\sigma_2 + \ldots + \alpha_k\sigma_k) \leq \alpha_1 + \alpha_2 + \ldots + \alpha_k=1$.

(2) By induction, it is clear that $\mathfrak{N}(u_1 + u_2 + \ldots + u_k) \leq \delta_1 \mathfrak{N}_1(u_1) + \delta_2 \mathfrak{N}_2(u_2) + \ldots + \delta_k \mathfrak{N}_k(u_k)$ for all $u_1, u_2, \ldots, u_k \in \mathcal{U}$ where $\delta_1 + \delta_2 + \ldots + \delta_3 = 1$. \Box

Example 3.3. Define $\mathfrak{N}^{\|.\|}:\mathcal{U} \to I$ by $\mathfrak{N}^{\|.\|}(u) = \begin{cases} \frac{1}{\|u\|} & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases}$

for all $u \in \mathcal{U}$. Then $(\mathcal{U}, \mathfrak{N}^{\|\cdot\|})$ is convex fuzzy normed space and is called the convex fuzzy normed space induced by $\|\cdot\|$.

Proof. We show that all conditions of Definition 3.1 are satisfied.

(1) It is clear that $\mathfrak{N}^{\|.\|}(u) \in I$.

(2) $\mathfrak{N}^{\|\cdot\|}(u)=0$ if and only if u=0 follows immediately from the definition of $\mathfrak{N}^{\|\cdot\|}$.

(3) $A_{\mathbb{R}}(\alpha) \cdot \mathfrak{N}^{\|\cdot\|}(u) = \frac{1}{|\alpha|} \frac{1}{\|u\|} = \frac{1}{\|\alpha u\|} = \mathfrak{N}^{\|\cdot\|}(\alpha u).$ (4) $\gamma \mathfrak{N}^{\|\cdot\|}(u) + \delta \mathfrak{N}^{\|\cdot\|}(v) = \frac{\gamma}{\|u\|} + \frac{\delta}{\|v\|} = \frac{\gamma \|v\| + \delta \|u\|}{\|u\| \|v\|} \ge \frac{1}{\|u+v\|} = \mathfrak{N}^{\|\cdot\|}(u+v).$ Hence $(\mathcal{U}, \mathfrak{N}^{\|\cdot\|})$ is a convex fuzzy normed space when $\gamma + \delta = 1.$

Theorem 3.4. If we define $\mathfrak{N}: \mathbb{R} \to I$ by $\mathfrak{N}(\alpha) = A_{\mathbb{R}}(\alpha,)$ for all $\alpha \in \mathbb{R}$, then $(\mathbb{R}, \mathfrak{N})$ is a convex fuzzy normed space.

Proof. We show that all conditions of Definition 3.1 are satisfied: (1) It is clear that $\mathfrak{N}(\alpha) \in I$, for all $\alpha \in \mathbb{R}$. (2) $\mathfrak{N}(\alpha)=0$ if and only if $A_{\mathbb{R}}(\alpha)=0$ if and only if $\alpha =0$. (3) $\mathfrak{N}(\alpha\beta) = A_{\mathbb{R}}(\alpha\beta) \leq A_{\mathbb{R}}(\alpha) \cdot A_{\mathbb{R}}(\beta) = \mathfrak{N}(\alpha) \mathfrak{N}(\beta)$ for all $0 \neq \alpha \in \mathbb{R}$. (4) $\mathfrak{N}(\alpha + \beta) = A_{\mathbb{R}}(\alpha + \beta) \leq \gamma A_{\mathbb{R}}(\alpha) + \delta A_{\mathbb{R}}(\beta) = \gamma \mathfrak{N}(\alpha) + \delta \mathfrak{N}(\beta)$. where $\gamma + \delta = 1$. Hence $(\mathbb{R}, \mathfrak{N})$ is a convex fuzzy normed space.

Example 3.5. Let $\mathcal{U} = C[a, b]$. Let $\mathfrak{N}(g) = \max_{\alpha \in [a, b]} A_{\mathbb{R}}[g(\alpha)]$, for all $g \in \mathcal{U}$. Then $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space.

Proof. We show that all conditions of Definition 3.1 are satisfied: (1) It is clear that $\mathfrak{N}(g) \in I$ for all $g \in \mathcal{U}$. (2) $\mathfrak{N}(g) = 0$ if and only if $max_{\alpha \in [a, b]} A_{\mathbb{R}}[g(\alpha)] = 0$ if and only if $A_{\mathbb{R}}[g(\alpha)]$ = 0 for all $\alpha \in [a, b]$ if and only if $g(\alpha) = 0$, for all $\alpha \in [a, b]$ if and only if g = 0. (3) $\mathfrak{N}(\sigma g) = max_{\alpha \in [a, b]} A_{\mathbb{R}}[\sigma g(\alpha)] \leq A_{\mathbb{R}}(\sigma) \cdot max_{\alpha \in [a, b]} A_{\mathbb{R}}[g(\alpha)] = A_{\mathbb{R}}(\sigma) \cdot \mathfrak{N}(g)$, for all $0 \neq \sigma \in \mathbb{R}$. (4) $\frac{N}{g+k} = \max_{\alpha \in [a,b]} A_{\mathbb{R}}[(g+k)(\alpha)] = \max_{\alpha \in [a,b]} A_{\mathbb{R}}[(g(\alpha)+k(\alpha)] \leq max_{\alpha \in [a, b]}\gamma A_{\mathbb{R}}[(g(\alpha)]+max_{\alpha \in [a, b]}\delta A_{\mathbb{R}}[(k(\alpha)], \text{ where } \gamma + \delta = 1$. Now, $\mathfrak{N}(g+k) \leq \gamma max_{\alpha \in [a, b]}A_{\mathbb{R}}[(g(\alpha)]+\delta max_{\alpha \in [a, b]}A_{\mathbb{R}}[(k(\alpha)] = \gamma \mathfrak{N}(g) + \delta \mathfrak{N}(k)$. Hence $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space.

Example 3.6. Define $\mathfrak{N}_{\|.\|}(u) = \frac{\|u\|}{1+\|u\|}$, for all $u \in \mathcal{U}$ when $(\mathcal{U}, \|.\|)$ is a normed space. Then $(\mathcal{U}, \mathfrak{N}_{\|.\|})$ is a convex fuzzy normed space.

Proof. To prove that $\mathfrak{N}_{\|.\|}$ satisfies all the conditions of Definition 3.1, (1) $0 \leq \mathfrak{N}_{\|.\|}(u) \leq 1$ for all $u \in \mathcal{U}$; (2) $u = 0 \iff \|u\| = 0 \iff \frac{\|u\|}{1+\|u\|} = 0 \iff \mathfrak{N}_{\|.\|}(u) = 0$; (3) $\mathfrak{N}_{\|.\|}(\sigma u) = \frac{\|\sigma u\|}{1+\|\sigma u\|} = \frac{|\sigma|\|u\|}{1+|\sigma|\|u\|} \leq [\frac{|\sigma|}{1+|\sigma|}] \cdot [\frac{\|u\|}{1+\|u\|}] = A_{|.|}(\sigma) \cdot \mathfrak{N}_{\|.\|}(u)$; (4) To prove $\mathfrak{N}_{\|.\|}(u+v) \leq \alpha \mathfrak{N}_{\|.\|}(u) + \beta \mathfrak{N}_{\|.\|}(v)$, for all $u, v, \in \mathcal{U}$, put $\beta = (1-\alpha)$. Then $\mathfrak{N}_{\|.\|}(u+v) = 1 - \frac{1}{1+\|u+v\|} \leq 1 - \frac{1}{1+\alpha\|u\|+(1-\alpha)\|v\|} \leq \frac{\alpha\|u\|+(1-\alpha)\|v\|}{1+\alpha\|u\|+(1-\alpha)\|v\|} \leq \alpha \mathfrak{N}_{\|.\|}(u) + \beta \mathfrak{N}_{\|.\|}(v)$. Thus $(\mathcal{U}, \mathfrak{N}_{\|.\|})$ is a convex fuzzy normed space. \Box

Theorem 3.7. Let $(\mathcal{U}_1, \mathfrak{N}_1)$ and $(\mathcal{U}_2, \mathfrak{N}_2)$ be convex fuzzy normed spaces and let $\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2$. Then $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space, where $\mathfrak{N}[(u_1, u_2)] = \gamma \mathfrak{N}_1(u_1) + \delta \mathfrak{N}_2(u_2)$, for all $(u_1, u_2) \in \mathcal{U}$ where $\gamma + \delta = 1$. Proof. We show that all conditions of Definition 3.1 are satisfied. (1) Since $0 \leq \mathfrak{N}_1(u_1) \leq 1$ and $0 \leq \mathfrak{N}_2(u_2) \leq 1$, $0 \leq \mathfrak{N}[(u_1, u_2)] \leq 1$ (2) $\mathfrak{N}[(u_1, u_2)]=0$ if and only if $\gamma \mathfrak{N}_1(u_1) + \delta \mathfrak{N}_2(u_2)=0$ if and only if $\mathfrak{N}_1(u_1)=0$ and $\mathfrak{N}_2(u_2)=0$ if and only if $u_1=0$ and $u_2=0$ if and only if $(u_1, u_2) = (0, 0)$ (3) $\mathfrak{N}[\alpha(u_1, u_2)]=\mathbf{n}[(\alpha u_1, \alpha u_2)]=\gamma \mathfrak{N}_1(\alpha u_1) + \delta \mathfrak{N}_2(\alpha u_2) \leq A_{\mathbb{R}}(\alpha)$. $\gamma \mathfrak{N}_1(\alpha u_1) + A_{\mathbb{R}}(\alpha)$. $\delta \mathfrak{N}_2(u_2) \leq A_{\mathbb{R}}(\alpha)$ [$\gamma \mathfrak{N}_1(u_1) + \delta \mathfrak{N}_2(u_2)$]=a(c). $\mathbf{n}[(u_1, u_2)]$ (4) $\mathfrak{N}[(u_1, u_2) + (v_1, v_2)] = \mathfrak{N}[(u_1 + v_1) + (u_2 + v_2)] = \gamma \mathfrak{N}_1(u_1 + v_1) + \delta \mathfrak{N}_2(u_2 + v_2) \leq \gamma[\sigma \mathfrak{N}_1(u_1) + \theta \mathfrak{N}_1(v_1)] + \delta[\sigma \mathfrak{N}_2(u_2) + \theta \mathfrak{N}_2(v_2)],$ where $\gamma + \delta = 1$ and $\sigma + \theta = 1$.

Now, $\mathfrak{N}[(u_1, u_2) + (v_1, v_2)] \leq \sigma[\gamma \mathfrak{N}_1(u_1) + \delta \mathfrak{N}_2(u_2)] + \theta[\gamma \mathfrak{N}_1(v_1) + \delta \mathfrak{N}_2(v_2)] = \sigma \mathfrak{N}[(u_1, u_2)] + \theta \mathfrak{N}[(v_1, v_2)].$ Hence $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space. \Box

Now, the following corollaries follow easily.

Corollary 3.8. If $(\mathcal{U}_1, \mathfrak{N}_1)$, $(\mathcal{U}_2, \mathfrak{N}_2)$, ..., $(\mathcal{U}_k, \mathfrak{N}_k)$ are algebra fuzzy normed spaces, then $(\mathcal{U}, \mathfrak{N})$ is convex fuzzy normed space, where $\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2 \times \ldots \times \mathcal{U}_k$ and $\mathfrak{N}[(u_1, u_2, \ldots, u_k)] = \delta_1 \mathfrak{N}_1(u_1) + \delta_2 \mathfrak{N}_2(u_2) + \ldots + \delta_k \mathfrak{N}_k(u_k)$, for $all(u_1, u_2, \ldots, u_k) \in \mathcal{U}$ where $\delta_1 + \delta_2 + \ldots + \delta_3 = 1$.

Corollary 3.9. If $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space, then $(\mathcal{U}^k, \mathfrak{N}_{\mathcal{U}})$ is a convex fuzzy normed space, where $\mathcal{U}^k = \mathcal{U} \times \mathcal{U} \times \ldots \times \mathcal{U}$ (k-times) and $\mathfrak{N}_{\mathcal{U}}[(u_1, u_2, \ldots, u_k)] = \delta_1 \mathfrak{N}(u_1) + \delta_2 \mathfrak{N}(u_2) + \ldots + \delta_k \mathfrak{N}(u_k)$ for all $(u_1, u_2, \ldots, u_k) \in \mathcal{U}$, where $\delta_1 + \delta_2 + \ldots + \delta_k = 1$.

Definition 3.10. Let $(\mathcal{U}, \mathfrak{N})$ be a convex fuzzy normed space and let (u_k) be a sequence in \mathcal{U} . We say that (u_k) is convex fuzzy convergent to the limit u as k approaches to ∞ if, for every $\alpha \in (0, 1)$, there exists $N \in \mathbb{N}$ such that $\mathfrak{N}(u_k-u) < \alpha$, for all $k \geq N$. If (u_k) is convex fuzzy convergent to the limit u, we write $\lim_{k\to\infty} u_k = u$ or $u_k \to u$ as $k \to infty$ or $\lim_{n\to\infty} \mathfrak{N}(u_k-u) = 0$.

Definition 3.11. Suppose that $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space. Put $cfb(u, \alpha) = \{ v \in \mathcal{U}: \mathfrak{N}(u-v) < \alpha \}$ and $cfb[u, \alpha] = \{ v \in \mathcal{U}: \mathfrak{N}(u-v) < \alpha \}$. Then $cfb(u, \alpha)$ and $cfb[u, \alpha]$ is called convex open and convex closed fuzzy ball with the center $u \in \mathcal{U}$ and radius α , with $\alpha \in (0, 1)$.

Definition 3.12. Let $(\mathcal{U}, \mathfrak{N})$ be a convex fuzzy normed space and let (u_k) be a sequence in \mathcal{U} . We say that (u_k) is a convex fuzzy Cauchy sequence in \mathcal{U} if, for every $\varepsilon \in (0, 1)$, there exists $N \in \mathbb{N}$ such that $\mathfrak{N}(u_k - u_m) < \varepsilon$, for all $k, m \geq N$.

Lemma 3.13. Let $(\mathcal{U}, \mathfrak{N})$ be a convex fuzzy normed space and define $A_{\mathbb{R}}/\mathfrak{N}$ $(u) = \mathfrak{N}(u)$, for all $u, v \in \mathcal{U}$. Then $A_{\mathbb{R}}/\mathfrak{N}(u) - \mathfrak{N}(v) \leq \mathfrak{N}(u-v)$, for all $u, v \in \mathcal{U}$.

Lemma 3.14. If $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space, then $\mathfrak{N}(u - v) = \mathfrak{N}(v - u)$, for all $u, v \in \mathcal{U}$.

Proof. $\mathfrak{N}(u-v) = \mathfrak{N}[(-1)(v-u)] \leq A_{\mathbb{R}}(-1)$. $\mathfrak{N}(v-u) = A_{\mathbb{R}}(1)$. $\mathfrak{N}(v-u) = \mathfrak{N}(v-u)$; that is, $\mathfrak{N}(u-v) \leq \mathfrak{N}(v-u)$. Similarly, $\mathfrak{N}(v-u) \leq \mathfrak{N}(u-v)$, from these two inequalities we conclude that $\mathfrak{N}(u-v) = \mathfrak{N}(v-u)$, for all $u, v \in \mathcal{U}$.

Definition 3.15. Let $\mathcal{U} \neq \emptyset$ and if the fuzzy set $\mathfrak{M}: \mathcal{U} \times \mathcal{U} \rightarrow [0, 1]$ satisfies (1) $\mathfrak{W}(u, v) \in (0, 1)$,

(2) $u = v \iff \mathfrak{M}(u, v) = 0$, (3) $\mathfrak{M}(u, v) = \mathfrak{M}(v, u)$,

(4) $\alpha \mathfrak{M}(u, w) + \beta \mathfrak{M}(w, v) \ge \mathfrak{M}(u, v)$, for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta = 1$ and for all $u, v, w \in \mathcal{U}$.

Then $(\mathcal{U}, \mathfrak{M})$ is a convex fuzzy metric space or a c-fuzzy metric space or simply a c-FMS.

The proof of the next result is clear and hence is omitted.

Theorem 3.16. If $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space, then $(\mathcal{U}, \mathfrak{M}_{\mathfrak{N}})$ is a convex fuzzy metric space, where $\mathfrak{M}_{\mathfrak{N}}(u, v) = \mathfrak{N}(u - v)$, for all $u, v \in \mathcal{U}$. We call $(\mathcal{U}, \mathfrak{M}_{\mathfrak{N}})$ the convex fuzzy metric space induced by \mathfrak{N} .

Definition 3.17. If $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space, then $\mathcal{W} \subseteq \mathcal{U}$ is known as convex Fuzzy open if $cfb(w,\alpha) \subseteq \mathcal{W}$, for any arbitrary $w \in \mathcal{W}$ and for some $\alpha \in (0, 1)$. Also, $\mathcal{D} \subseteq \mathcal{U}$ is known as convex fuzzy closed if \mathcal{D}^C is fuzzy open. Moreover, the convex fuzzy closure $\overline{\mathcal{D}}$ of \mathcal{D} , is defined to be the smallest fuzzy closed set containing \mathcal{D} . Also, $\mathcal{D} \subseteq \mathcal{U}$ is known as convex fuzzy closed fuzzy dense in \mathcal{U} if whenever $\overline{\mathcal{D}} = \mathcal{U}$.

Theorem 3.18. If $cfb(u, \alpha)$ is a convex open fuzzy ball in a convex fuzzy normed space $(\mathcal{U}, \mathfrak{N})$, then it is a convex fuzzy open set.

Proof. Let $\operatorname{cfb}(u, \alpha)$ be a convex open fuzzy ball, where $u \in \mathcal{U}$ and $\alpha \in (0, 1)$. Let $v \in \operatorname{cfb}(u, \alpha)$. So $\mathfrak{N}(u-v) < \alpha$. Let $\beta = \mathfrak{N}(u-v)$. So $\beta < \alpha$. Then there is $\sigma \in (0, 1)$ such that $(\gamma \ \beta + \delta \ \sigma) < \alpha$. Now, consider the convex open fuzzy ball $\operatorname{cfb}(v, \sigma)$. We show that $\operatorname{cfb}(v, \sigma) \subseteq \operatorname{cfb}(u, \alpha)$. Let $z \in \operatorname{cfb}(v, \sigma)$. So $\mathfrak{N}(v-z) < \sigma$. Hence $\mathfrak{N}(u-z) \leq \gamma \mathfrak{N}(u-v) + \delta \mathfrak{N}(v-z)$, where $\gamma + \delta = 1$. Now, $\mathfrak{N}(u-z) \leq \gamma \beta + \delta \sigma$ and so $z \in \operatorname{cfb}(u, \alpha)$; that is, $\operatorname{cfb}(v, \sigma) \subseteq \operatorname{cfb}(u, \alpha)$. Therefore, $\operatorname{cfb}(u, \alpha)$ is a convex fuzzy open set.

Theorem 3.19. Let $(\mathcal{U}, \mathfrak{N})$ be a convex fuzzy normed space. (1) If $\{ \mathcal{U}_i : i \in I \}$ is a family of convex fuzzy open sets, then $\cup_{i \in I} \mathcal{U}_i$ is fuzzy

open set.

(2) If $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_k$ represent a finite number of convex fuzzy open set, then $\bigcap_{i=1}^k \mathcal{U}_i$ is fuzzy open set.

Proof.

(1) Suppose that { $\mathcal{U}_i: i \in I$ } is a family of convex fuzzy open sets with $\mathcal{U} = \bigcup_{i \in I} \mathcal{U}_i$. Let $U \in \mathcal{U}$. Then $U \in \bigcup_{i \in I} \mathcal{U}_i$. So $w \in \mathcal{U}_i$, for some $i \in I$. Since \mathcal{U}_i is a convex fuzzy open set, $\exists 0 < \sigma < 1$ satisfying $\mathrm{cfb}(U, \sigma) \subset \mathcal{U}_i$. Thus $\mathrm{cfb}(U, \sigma) \subset \mathcal{U}_i$. Thus $\mathrm{cfb}(U, \sigma) \subset \mathcal{U}_i \subseteq \bigcup_{i \in I} \mathcal{U}_i = \mathcal{W}$; that is, \mathcal{U} is a convex fuzzy open set.

(2) Let $\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_k$ be convex fuzzy open sets and put $\mathcal{V} = \bigcap_{i=1}^k \mathcal{U}_i$. We show that \mathcal{V} is a convex fuzzy open set. Let $v \in \mathcal{V}$. Then $v \in \mathcal{U}_i$, for each $1 \leq i \leq k$. Hence $\exists \ 0 \leq \alpha_i \leq 1$ satisfying $\operatorname{cfb}(v, \alpha_i) \subset \mathcal{U}_i$ since \mathcal{U}_i is a convex fuzzy open $\forall i = 1, 2, \ldots, k$. Let $\alpha = \min\{\alpha_i : 1 \leq i \leq k\}$. So $\alpha \leq \alpha_i, \forall 1 \leq i \leq k$. So $\operatorname{cfb}(v, \alpha) \subset \mathcal{U}_i$ for all $1 \leq i \leq k$. Therefore, $\operatorname{cfb}(v, \alpha) \subseteq \bigcap_{i=1}^k \mathcal{U}_i = \mathcal{V}$, thus \mathcal{V} is a convex fuzzy open set.

Definition 3.20. [8] If $\mathcal{X} \neq \emptyset$, then a collection \mathfrak{J} of fuzzy subsets of \mathcal{X} is a fuzzy topology or simply FT on \mathcal{X} if:

(1) \mathcal{X} and \emptyset belongs to \mathfrak{J} ,

(2) if $\{\mathcal{B}_i: i \in I\} \in \mathfrak{J}$, then $\cup_{i \in I} \mathcal{B}_i \in \mathfrak{J}$,

(3) if $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_k \in \mathfrak{J}$, then $\cap_{i=1}^k \mathcal{B}_i \in \mathfrak{J}$.

Theorem 3.21. If $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space, then it is a fuzzy topological space.

Proof. If $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy normed space, then putting $\mathfrak{J}_m = \{ \mathcal{W} \subset \mathcal{U} : w \in \mathcal{W} \iff \exists \alpha \in (0, 1) \text{ with } \mathrm{cfb}(w, \alpha) \subset \mathcal{W} \}$. Therefore, \mathfrak{J}_m must be a fuzzy topology on \mathcal{U} .

(1)
$$\emptyset$$
, $\mathcal{U} \in \mathfrak{J}_m$;

(2) Suppose that $\{ \mathcal{B}_i : i \in I \} \in \mathfrak{J}_m$, then $\bigcup_{i \in I} \mathcal{B}_i \in \mathfrak{J}_m$ by Definition 3.20.

(3) Let $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_k \in \mathfrak{J}_m$ then $\cap_{i=1}^k \mathcal{B}_i \in \mathfrak{J}_m$ by Definition 3.20.

Hence $(\mathcal{U}, \mathfrak{J}_m)$ is a fuzzy topological space.

Definition 3.22. A convex fuzzy normed space $(\mathcal{U}, \mathfrak{N})$ is said to be a convex fuzzy complete if for every convex fuzzy Cauchy sequence (u_k) in $\mathcal{U}, u_k \to u \in \mathcal{U}$ as $k \to infty$.

Theorem 3.23. In a convex fuzzy normed space $(\mathcal{U}, \mathfrak{N})$ if $u_k \to u \in \mathcal{U}$, as $k \to infty$, then (u_k) is convex fuzzy Cauchy.

Proof. Suppose that (u_k) in \mathcal{U} and $u_k \to u \in \mathcal{U}$ as $k \to infty$. Then, for any $\sigma \in (0, 1)$, we can find N with $\mathfrak{N}(u_k - \mathbf{u}) < \sigma$, for all $k \ge N$. Now, for

each $m, k \geq N$ $\mathfrak{N}(u_k - u_m) \leq \alpha \mathfrak{N}(u_k - u) + \beta \mathfrak{N}(u - u_m)$, where $\alpha + \beta = 1$. Therefore, $\mathfrak{N}(u_k - u_m) < \alpha \sigma + \beta \sigma = \sigma$. Hence (u_k) is a convex fuzzy Cauchy sequence.

Theorem 3.24. In a convex fuzzy normed space $(\mathcal{U}, \mathfrak{N})$, if $(u_k) \in \mathcal{U}$ with $u_k \to u$ and $(d_k) \in \mathcal{U}$ with \mathfrak{N} $(u_k - d_k) \to 0$ as $k \to \infty$, then $d_k \to u$.

Proof. Since $u_k \to u$, $\mathfrak{N}(u_k - \mathbf{u}) \to 0$ as $k \to \infty$. Now, $\mathfrak{N}(d_k - u) \leq \alpha \mathfrak{N}(d_k - u_k) + \beta \mathfrak{N}(u_k - \mathbf{u}) \to 0$ as $k \to \infty$, where $\alpha + \beta = 1$. Hence $d_k \to u$, as $k \to infty$.

Theorem 3.25. Let $(\mathcal{U}, \mathfrak{N})$ be a convex fuzzy normed space with $\mathcal{D} \subset \mathcal{U}$. Then $d \in \overline{\mathcal{D}}$ if and only if there is $(d_k) \in \mathcal{D}$ with $d_k \to d$ as $k \to \infty$.

Proof. Suppose that $d \in \overline{\mathcal{D}}$. If $d \in \mathcal{D}$, then choose the sequence of that type is $(d, d, \ldots, d, \ldots)$. If $d \notin \mathcal{D}$, then construct the sequence $(d_k) \in \mathcal{D}$ by $\mathfrak{N}(d_k-d)_{\mathbf{i}} \frac{1}{k}$, for each $k = 1, 2, 3, \ldots$. Then the convex fuzzy ball $\mathrm{cfb}(d, \frac{1}{k})$ contains $d_k \in D$ and $d_k \to d$ because $\lim_{k\to\infty} \mathfrak{N}(d_k - d) = 0$.

Conversely, if (d_k) in \mathcal{D} and $d_k \to d$, then $d \in \mathcal{D}$ or every convex fuzzy ball of d containing points $d_k \neq d$, so that d is an accumulation point of \mathcal{D} . Hence $d \in \overline{\mathcal{D}}$ by the definition of closure.

Theorem 3.26. Let $(\mathcal{U}, \mathfrak{N})$ be a convex fuzzy normed space with $\mathcal{D} \subset \mathcal{U}$. Then $\overline{\mathcal{D}} = \mathcal{U}$ if and only if for any $u \in \mathcal{U}$ there is $d \in D$ with $\mathfrak{N}(u - d) < \alpha$, for some $\alpha \in (0, 1)$.

Proof. Suppose that \mathcal{D} is fuzzy dense in \mathcal{U} and $u \in \mathcal{U}$. So $u \in \overline{\mathcal{D}}$ and by Theorem 3.25 there is a sequence $(d_n) \in \mathcal{D}$ such that $d_n \to u$; that is, for any $\alpha \in (0, 1)$, we can find N with $\mathfrak{N}(d_k - u) < \alpha$ for all $k \ge N$. Take $d = d_N$. So $\mathfrak{N}(u - d) < \alpha$.

Conversely, to prove \mathcal{D} is fuzzy dense in \mathcal{U} , we have to show that $\mathcal{D} \subseteq \overline{\mathcal{D}}$. Let $u \in \mathcal{U}$. Then there is $d_k \in \mathcal{D}$ such that $\mathfrak{N}(d_k - u) < \frac{1}{k}$. Now, take $0 < \sigma < 1$ such that $\frac{1}{k} < \sigma$, for each $k \geq N$ for $N \in \mathbb{N}$. Hence we have a sequence $(d_k) \in \mathcal{D}$ such that $\mathfrak{N}(d_k - u) < \frac{1}{k} < \sigma$ for all $k \geq N$; that is, $d_k \to u$ so $u \in \overline{\mathcal{D}}$.

Theorem 3.27. If $(\mathcal{U}_1, \mathfrak{N}_1)$ and $(\mathcal{U}_2, \mathfrak{N}_2)$ are two convex fuzzy normed spaces, then $(\mathcal{U}, \mathfrak{N})$ is a convex fuzzy complete convex fuzzy normed space if and only if $(\mathcal{U}_1, \mathfrak{N}_1)$ and $(\mathcal{U}_2, \mathfrak{N}_2)$ are fuzzy complete, where $\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2$ and $\mathfrak{N}[(u_1, u_2)] = \gamma \mathfrak{N}_1(u_1) + \delta \mathfrak{N}_2(u_2)$, for all $(u_1, u_2) \in \mathcal{U}$, where $\gamma + \delta = 1$.

Proof. Let $(\mathcal{U}_1, \mathfrak{N}_1)$ and $(\mathcal{U}_2, \mathfrak{N}_2)$ be convex fuzzy complete convex fuzzy normed spaces. Let (u_k) be convex fuzzy Cauchy sequence in \mathcal{U} then $(u_k) =$ (u_{1k}, u_{2k}) , where $(u_{1k}) \in \mathcal{U}_1$ and $(u_{2k}) \in \mathcal{U}_2$. Hence $\mathfrak{N}(u_k - u_m)$ convex fuzzy converges to zero as $k \to \infty$ and $m \to \infty$ this implies that $[\gamma \mathfrak{N}_1(u_{1k} - u_{1m}) + \delta \mathfrak{N}_2(u_{2k} - u_{2m})]$ is convex fuzzy convergent to zero as $k \to \infty$ and $m \to \infty$. Hence $\mathfrak{N}_1(u_{1k} - u_{1m})$ is convex fuzzy convergent to zero in $(\mathcal{U}_1, \mathfrak{N}_1)$ as $k \to \infty$ and $m \to \infty$ and $\mathfrak{N}_2(u_{2k} - u_{2m})$ is convex fuzzy convergent to zero in $(\mathcal{U}_1, \mathfrak{N}_1)$ as $k \to \infty$ and $m \to \infty$ and $\mathfrak{N}_2(u_{2k} - u_{2m})$ is convex fuzzy convergent to zero in $(\mathcal{U}_2, \mathfrak{N}_2)$ as $k \to \infty$ and $m \to \infty$. Therefore, (u_{1k}) is a fuzzy Cauchy sequence in $(\mathcal{U}_1, \mathfrak{N}_1)$ and (u_{2k}) is a fuzzy Cauchy sequence in $(\mathcal{U}_2, \mathfrak{N}_2)$. But $(\mathcal{U}_1, \mathfrak{N}_1)$ and $(\mathcal{U}_2, \mathfrak{N}_2)$, are convex fuzzy converges to $u_1 \in \mathcal{U}_1$ and (u_{2k}) convex fuzzy converges to $u_2 \in \mathcal{U}_2$. Put $u = (u_1, u_2)$. Then $u \in \mathcal{U}$ and (u_k) is convex fuzzy convergent to $u \in \mathcal{U}$ since $\mathfrak{N}(u_k - u) = \mathfrak{N}[(u_{1k}, u_{2k}) - (u_1, u_2)] = \mathfrak{N}[(u_{1k} - u_1) + (u_{2k} - u_2)] = \gamma \mathfrak{N}_1[(u_{1k} - u_1)] + \delta \mathfrak{N}_2[(u_{2k} - u_2)]$ By taking the limit on both sides as $k \to \infty$, we have $\mathfrak{N}(u_k - u) \to 0$.

The proof of the converse is similar and hence is omitted.

The following two corollaries follow easily.

Corollary 3.28. If $(\mathcal{U}_1, \mathfrak{N}_1)$, $(\mathcal{U}_2, \mathfrak{N}_2)$, ..., $(\mathcal{U}_k, \mathfrak{N}_k)$ are convex fuzzy normed spaces, then $(\mathcal{U}, \mathfrak{N})$ is convex fuzzy complete convex fuzzy normed space if and only if $(\mathcal{U}_1, \mathfrak{N}_1)$, $(\mathcal{U}_2, \mathfrak{N}_2)$, ..., $(\mathcal{U}_k, \mathfrak{N}_k)$ are convex fuzzy complete, where $\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2 \times \ldots \times \mathcal{U}_k$ and $\mathfrak{N}[(u_1, u_2, \ldots, u_k)] = \delta_1 \mathfrak{N}_1(u_1) + \delta_2$ $\mathfrak{N}_2(u_2) + \ldots + \delta_k \mathfrak{N}_k(u_k)$ for all $(u_1, u_2, \ldots, u_k) \in \mathcal{U}$, where $\delta_1 + \delta_2 + \ldots + \delta_k = 1$.

Corollary 3.29. Let $(\mathcal{U}, \mathfrak{N})$ be a convex fuzzy normed space. Then $(\mathcal{U}^k, \mathfrak{N}_k)$ is a convex fuzzy complete convex fuzzy normed space if and only if $(\mathcal{U}, \mathfrak{N})$ is convex fuzzy complete, where $\mathcal{U}^k = \mathcal{U} \times \mathcal{U} \times \ldots \times \mathcal{U}$ [k-times], where $k \in \mathbb{N}$ and $\mathfrak{N}_k[(u_1, u_2, \ldots, u_k)] = \delta_1 \mathfrak{N} (u_1) + \delta_2 \mathfrak{N}(u_2) + \ldots + \delta_k \mathfrak{N} (u_k)$, for all $(u_1, u_2, \ldots, u_k) \in \mathcal{U}^k$, where $\delta_1 + \delta_2 + \ldots + \delta_k = 1$.

4 Conclusion

In this paper, we opened a new line of research in fuzzy functional analysis by introducing a new fuzzy metric space, called a convex fuzzy metric space. Moreover, we introduced the notion of convex fuzzy absolute value which is a generalization of the ordinary absolute value.

References

- J. R. Kider, New fuzzy normed spaces, Baghdad Science Journal, 9, (2012), 559-564.
- [2] J. R. Kider, A. N. Kadhum, Properties of Fuzzy Norm of fuzzy Bounded Operators, Iraqi Journal of Science, 58, no. 3A, (2017), 1237–1281.
- [3] J. R. Kider, A. H. Ali, Properties of fuzzy absolute value on and properties finite dimensional fuzzy normed space, Iraqi Journal of Science, 59, no. 2B, (2018), 909–916.
- [4] J. R. Kider, M. N. Gheeab, Properties of a General Fuzzy Normed Space, Iraqi Journal of Science, 60, no. 4, (2019), 847–855.
- [5] J. R. Kider, N. A. Kadhum, Properties of Fuzzy Compact Linear Operators on Fuzzy Normed Spaces, Baghdad Science Journal, 16, no. 1, (2019), 104–110.
- [6] Z. A. Khudhair, J. R. Kider, Some Properties of Fuzzy Compact Algebra Fuzzy Normed Spaces and Finite Dimensional Algebra Fuzzy Normed Spaces, IOP Publishing, Journal of Physics: Conference Series, 1879, (2021), 1–11.
- [7] A. A. Khalaf, J. R. Kider, The extension of linear operator on a-fuzzy normed space when it is fuzzy compact, International Journal of Mathematics and Computer Science, **17**, no. 3, (2022), 1133–1144.
- [8] R. K. Abbas, J. R. Kider, The a-fuzzy normed algebra and its basic properties, International Journal of Mathematics and Computer Science, 18, no. 3, (2023), 399–408.