Characterizations of weakly $\delta(\Lambda, p)$-closed functions

Chalongchai Klanarong, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Faculty of Science
Mahasarakham University
Maha Sarakham, 44150, Thailand

email: chalongchai.k@msu.ac.th, chawalit.b@msu.ac.th

(Received July 11, 2023, Accepted November 6, 2023,
Published November 10, 2023)

Abstract
This paper is concerned with the concept of weakly $\delta(\Lambda, p)$-closed functions. Moreover, several characterizations of weakly $\delta(\Lambda, p)$-closed functions are established.

1 Introduction

Key words and phrases: $\delta(\Lambda, p)$-open set, $\delta(\Lambda, p)$-closed function.
The Corresponding author is Chalongchai Klanarong.

AMS (MOS) Subject Classifications: 54A05, 54C10
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
of weakly δ-closedness as a new generalization of δ-closedness and obtained several characterizations of weakly δ-closed functions. In [3], the present authors investigated some properties of (Λ, sp)-closed sets and (Λ, sp)-open sets. Boonpok and Viriyapong [4] introduced and investigated the concepts of (Λ, p)-open sets and (Λ, p)-closed sets. Quite recently, Boonpok and Thongmoon [2] introduced the notions of $\delta(\Lambda, p)$-closed sets and $\delta(\Lambda, p)$-open sets in topological spaces. In this paper, we introduce the concept of weakly $\delta(\Lambda, p)$-closed functions. Moreover, we investigate some characterizations of weakly $\delta(\Lambda, p)$-closed functions.

2 Preliminaries

Throughout the present paper, unless explicitly stated, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed. For a subset A of a topological space (X, τ), $\text{Cl}(A)$ and $\text{Int}(A)$, represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be preopen [9] if $A \subseteq \text{Int}(\text{Cl}(A))$. The complement of a preopen set is called preclosed. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [7] is defined as follows:

$$\Lambda_p(A) = \cap\{U \mid A \subseteq U, U \in PO(X, \tau)\}.$$

A subset A of a topological space (X, τ) is called a Λ_p-set [4] (pre-Λ-set [7]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p)-closed [4] if $A = T \cap C$, where T is a Λ_p-set and C is a preclosed set. The complement of a (Λ, p)-closed set is called (Λ, p)-open. A point $x \in X$ is called a (Λ, p)-cluster point [4] of A if $A \cap U \neq \emptyset$ for every (Λ, p)-open set U of X containing x. The set of all (Λ, p)-cluster points of A is called the (Λ, p)-closure [4] of A and is denoted by $A^{(\Lambda, p)}$. The union of all (Λ, p)-open sets of X contained in A is called the (Λ, p)-interior [4] of A and is denoted by $A_{(\Lambda, p)}$. A subset A of a topological space (X, τ) is called $p(\Lambda, p)$-open [4] (resp. $\alpha(\Lambda, p)$-open [14]) if $A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)}$ (resp. $A \subseteq [[A_{(\Lambda, p)}]^{(\Lambda, p)}]_{(\Lambda, p)}$). The complement of a $p(\Lambda, p)$-open (resp. $\alpha(\Lambda, p)$-open) set is called $p(\Lambda, p)$-closed (resp. $\alpha(\Lambda, p)$-closed). A subset A of a topological space (X, τ) is called $r(\Lambda, p)$-open [4] if $A = [A^{(\Lambda, p)}]_{(\Lambda, p)}$. Let A be a subset of a topological space (X, τ). A point x of X is called a $\delta(\Lambda, p)$-cluster point [2] of A if $A \cap [V^{(\Lambda, p)}]_{(\Lambda, p)} \neq \emptyset$ for every (Λ, p)-open set V of X containing x. The set of all $\delta(\Lambda, p)$-cluster points of A is called the $\delta(\Lambda, p)$-closure [2] of A and is denoted by $A^{\delta(\Lambda, p)}$. If $A = A^{\delta(\Lambda, p)}$, then A is said to be $\delta(\Lambda, p)$-closed [2]. The complement of a $\delta(\Lambda, p)$-closed
set is said to be $\delta(\Lambda, p)$-open. The union of all $\delta(\Lambda, p)$-open sets contained in A is called the $\delta(\Lambda, p)$-interior [2] of A and is denoted by $A_{\delta(\Lambda, p)}$.

3 Some characterizations of weakly $\delta(\Lambda, p)$-closed functions

We begin this section by introducing the concept of weakly $\delta(\Lambda, p)$-open functions.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called weakly $\delta(\Lambda, p)$-closed if $[f(K_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(K)$ for every (Λ, p)-closed set K of X.

Theorem 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

1. f is weakly $\delta(\Lambda, p)$-closed;
2. $[f(U)]^{\delta(\Lambda, p)} \subseteq f(U^{(\Lambda, p)})$ for every (Λ, p)-open set U of X;
3. $[f(U)]^{\delta(\Lambda, p)} \subseteq f(U^{(\Lambda, p)})$ for every $r(\Lambda, p)$-open set U of X;
4. $[f(K_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(K)$ for every $p(\Lambda, p)$-closed set K of X;
5. $[f(K_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(K)$ for every $a(\Lambda, p)$-closed set K of X;
6. $[f([A^{(\Lambda, p)}]_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(A^{(\Lambda, p)})$ for every subset A of X;
7. $[f([A^{\delta(\Lambda, p)}]_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(A^{\delta(\Lambda, p)})$ for every subset A of X;
8. $[f(U)]^{\delta(\Lambda, p)} \subseteq f(U^{(\Lambda, p)})$ for every $p(\Lambda, p)$-open set U of X.

Proof. (1) \Rightarrow (2): Let U be any (Λ, p)-open set of X. Then, $[f(U)]^{\delta(\Lambda, p)} = [f(U^{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f([U^{(\Lambda, p)}]_{(\Lambda, p)})^{\delta(\Lambda, p)} \subseteq f(U^{(\Lambda, p)})$.

(2) \Rightarrow (1): Let K be any (Λ, p)-closed set of X. Then, $[f(K_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f([K_{(\Lambda, p)}]^{\delta(\Lambda, p)})^{\delta(\Lambda, p)} = F(K)$.

It is clear that: (1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1), (1) \Rightarrow (6) \Rightarrow (8) \Rightarrow (1) and (1) \Rightarrow (7).

(7) \Rightarrow (8): This is obvious since $U^{\delta(\Lambda, p)} = U^{(\Lambda, p)}$ for every $p(\Lambda, p)$-open set U of X.

Definition 3.3. [11] A topological space (X, τ) is said to be (Λ, p)-regular if for each (Λ, p)-closed set F and each point $x \in X - F$, there exist disjoint (Λ, p)-open sets U and V such that $x \in U$ and $F \subseteq V$.

\[\]
Theorem 3.4. Let \((Y, \sigma)\) be a \((\Lambda, p)\)-regular space. For a function \(f: (X, \tau) \to (Y, \sigma)\), the following properties are equivalent:

1. \(f\) is weakly \(\delta(\Lambda, p)\)-closed;
2. \([f(U)]^{\delta(\Lambda, p)} \subseteq f(U^{(\Lambda, p)})\) for every \(r(\Lambda, p)\)-open set \(U\) of \(X\);
3. for each subset \(B\) of \(Y\) and each \((\Lambda, p)\)-open set \(U\) of \(X\) with \(f^{-1}(B) \subseteq U\), there exists a \(\delta(\Lambda, p)\)-open set \(V\) of \(Y\) such that \(B \subseteq V\) and \(f^{-1}(V) \subseteq U^{(\Lambda, p)}\);
4. for each point \(y \in Y\) and each \((\Lambda, p)\)-open set \(U\) of \(X\) with \(f^{-1}(y) \subseteq U\), there exists a \(\delta(\Lambda, p)\)-open set \(V\) of \(Y\) containing \(y\) such that \(f^{-1}(V) \subseteq U^{(\Lambda, p)}\).

Proof. \((1) \Rightarrow (2)\): This is obvious.

\((2) \Rightarrow (3)\): Let \(B\) be any subset of \(Y\) and \(U\) be \((\Lambda, p)\)-open in \(X\) with \(f^{-1}(B) \subseteq U\). Then, \(f^{-1}(B) \cap [X - U^{(\Lambda, p)}]^{(\Lambda, p)} = \emptyset\) and hence

\[B \cap f([X - U^{(\Lambda, p)}]^{(\Lambda, p)}) = \emptyset.\]

Since \(X - U^{(\Lambda, p)}\) is \(r(\Lambda, p)\)-open, \(B\) \(\cap [f(X - U^{(\Lambda, p)})]^{\delta(\Lambda, p)} = \emptyset\) by \((2)\). Let \(V = Y - [f(X - U^{(\Lambda, p)})]^{\delta(\Lambda, p)}\). Then, \(V\) is \(\delta(\Lambda, p)\)-open such that \(B \subseteq V\) and \(f^{-1}(V) \subseteq X - f^{-1}([f(X - U^{(\Lambda, p)})]^{\delta(\Lambda, p)}) \subseteq X - f^{-1}(f(X - U^{(\Lambda, p)})) \subseteq U^{(\Lambda, p)}\).

\((3) \Rightarrow (4)\): This is obvious.

\((4) \Rightarrow (1)\): Let \(K\) be any \((\Lambda, p)\)-closed set of \(X\) and \(y \in Y - f(K)\). Since \(f^{-1}(y) \subseteq X - K\), there exists a \(\delta(\Lambda, p)\)-open set \(V\) of \(Y\) such that \(y \in V\) and \(f^{-1}(V) \subseteq [Y - K]^{(\Lambda, p)} = X - K^{(\Lambda, p)}\) by \((4)\). Then, we have \(V \cap f(K^{(\Lambda, p)}) = \emptyset\) and hence \(y \in Y - [f(K^{(\Lambda, p)})]^{\delta(\Lambda, p)}\). Thus, \([f(K^{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(K)\). This shows that \(f\) is weakly \(\delta(\Lambda, p)\)-closed.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

Characterizations of weakly $\delta(\Lambda, p)$... 507

