International Journal of Mathematics and Computer Science, **19**(2024), no. 2, 503–507

(M CS)

Characterizations of weakly $\delta(\Lambda, p)$ -closed functions

Chalongchai Klanarong, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: chalongchai.k@msu.ac.th, chawalit.b@msu.ac.th

(Received July 11, 2023, Accepted November 6, 2023, Published November 10, 2023)

Abstract

This paper is concerned with the concept of weakly $\delta(\Lambda, p)$ -closed functions. Moreover, several characterizations of weakly $\delta(\Lambda, p)$ -closed functions are established.

1 Introduction

In 1982, Mashhour et al. [9] introduced and studied the notion of preclosed functions. Noiri [10] introduced and investigated the concept of semi-closed functions. In 1983, Mashhour et al. [8] studied some characterizations of α closed functions. El-Monsef et al. [1] introduced and investigated the notions of β -closed functions. In 1984, Rose [13] introduced and studied the notions of weakly open functions and almost open functions. Rose and Janković [12] investigated some of the fundamental properties of weakly closed functions. In 2004, Caldas and Navalagi [6] introduced two new classes of functions called weakly preopen functions and weakly preclosed functions as generalization of weak openness and weak closedness due to [13] and [12], respectively. In 2008, Caldas and Navalagi [5] introduced and discussed the notion

Key words and phrases: $\delta(\Lambda, p)$ -open set, $\delta(\Lambda, p)$ -closed function. The Corresponding author is Chalongchai Klanarong. AMS (MOS) Subject Classifications: 54A05, 54C10 ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net of weakly δ -closedness as a new generalization of δ -closedness and obtained several characterizations of weakly δ -closed functions. In [3], the present authors investigated some properties of (Λ, sp) -closed sets and (Λ, sp) -open sets. Boonpok and Viriyapong [4] introduced and investigated the concepts of (Λ, p) -open sets and (Λ, p) -closed sets. Quite recently, Boonpok and Thongmoon [2] introduced the notions of $\delta(\Lambda, p)$ -closed sets and $\delta(\Lambda, p)$ -open sets in topological spaces. In this paper, we introduce the concept of weakly $\delta(\Lambda, p)$ -closed functions. Moreover, we investigate some characterizations of weakly $\delta(\Lambda, p)$ -closed functions.

2 Preliminaries

Throughout the present paper, unless explicitly stated, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed. For a subset A of a topological space (X, τ) , $\operatorname{Cl}(A)$ and $\operatorname{Int}(A)$, represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be preopen [9] if $A \subseteq \operatorname{Int}(\operatorname{Cl}(A))$. The complement of a preopen set is called preclosed. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [7] is defined as follows:

 $\Lambda_p(A) = \bigcap \{ U \mid A \subseteq U, U \in PO(X, \tau) \}$. A subset A of a topological space (X,τ) is called a Λ_p -set [4] (pre- Λ -set [7]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [4] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. A point $x \in X$ is called a (Λ, p) -cluster point [4] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [4] of A and is denoted by $A^{(\Lambda,p)}$. The union of all (Λ,p) -open sets of X contained in A is called the (Λ, p) -interior [4] of A and is denoted by $A_{(\Lambda, p)}$. A subset A of a topological space (X, τ) is called $p(\Lambda, p)$ -open [4] (resp. $\alpha(\Lambda, p)$ -open [14]) if $A \subseteq [A^{(\Lambda,p)}]_{(\Lambda,p)}$ (resp. $A \subseteq [[A_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)}$). The complement of a $p(\Lambda, p)$ -open (resp. $\alpha(\Lambda, p)$ -open) set is called $p(\Lambda, p)$ -closed (resp. $\alpha(\Lambda, p)$ closed). A subset A of a topological space (X, τ) is called $r(\Lambda, p)$ -open [4] if $A = [A^{(\Lambda,p)}]_{(\Lambda,p)}$. Let A be a subset of a topological space (X,τ) . A point x of X is called a $\delta(\Lambda, p)$ -cluster point [2] of A if $A \cap [V^{(\Lambda, p)}]_{(\Lambda, p)} \neq \emptyset$ for every (Λ, p) -open set V of X containing x. The set of all $\delta(\Lambda, p)$ -cluster points of A is called the $\delta(\Lambda, p)$ -closure [2] of A and is denoted by $A^{\delta(\Lambda, p)}$. If $A = A^{\delta(\Lambda, p)}$, then A is said to be $\delta(\Lambda, p)$ -closed [2]. The complement of a $\delta(\Lambda, p)$ -closed

Characterizations of weakly $\delta(\Lambda, p)$...

set is said to be $\delta(\Lambda, p)$ -open. The union of all $\delta(\Lambda, p)$ -open sets contained in A is called the $\delta(\Lambda, p)$ -interior [2] of A and is denoted by $A_{\delta(\Lambda, p)}$.

3 Some characterizations of weakly $\delta(\Lambda, p)$ -closed functions

We begin this section by introducing the concept of weakly $\delta(\Lambda, p)$ -open functions.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called weakly $\delta(\Lambda, p)$ closed if $[f(K_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(K)$ for every (Λ, p) -closed set K of X.

Theorem 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $\delta(\Lambda, p)$ -closed;
- (2) $[f(U)]^{\delta(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ,p) -open set U of X;
- (3) $[f(U)]^{\delta(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every $r(\Lambda,p)$ -open set U of X;
- (4) $[f(K_{(\Lambda,p)})]^{\delta(\Lambda,p)} \subseteq f(K)$ for every $p(\Lambda,p)$ -closed set K of X;
- (5) $[f(K_{(\Lambda,p)})]^{\delta(\Lambda,p)} \subseteq f(K)$ for every $\alpha(\Lambda,p)$ -closed set K of X;
- (6) $[f([A^{(\Lambda,p)}]_{(\Lambda,p)})]^{\delta(\Lambda,p)} \subseteq f(A^{(\Lambda,p)})$ for every subset A of X;
- (7) $[f([A^{\delta(\Lambda,p)}]_{(\Lambda,p)})]^{\delta(\Lambda,p)} \subseteq f(A^{\delta(\Lambda,p)})$ for every subset A of X;
- (8) $[f(U)]^{\delta(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every $p(\Lambda,p)$ -open set U of X.

Proof. (1) \Rightarrow (2): Let U be any (Λ, p) -open set of X. Then, $[f(U)]^{\delta(\Lambda,p)} = [f(U_{(\Lambda,p)})]^{\delta(\Lambda,p)} \subseteq [f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{\delta(\Lambda,p)} \subseteq f(U^{(\Lambda,p)}).$

 $(2) \Rightarrow (1)$: Let K be any (Λ, p) -closed set of X. Then, $[f(K_{(\Lambda,p)})]^{\delta(\Lambda,p)} \subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)}) \subseteq f(K^{(\Lambda,p)}) = F(K).$

It is clear that: $(1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1), (1) \Rightarrow (6) \Rightarrow (8) \Rightarrow (1)$ and $(1) \Rightarrow (7)$.

(7) \Rightarrow (8): This is obvious since $U^{\delta(\Lambda,p)} = U^{(\Lambda,p)}$ for every $p(\Lambda,p)$ -open set U of X.

Definition 3.3. [11] A topological space (X, τ) is said to be (Λ, p) -regular if for each (Λ, p) -closed set F and each point $x \in X - F$, there exist disjoint (Λ, p) -open sets U and V such that $x \in U$ and $F \subseteq V$. **Theorem 3.4.** Let (Y, σ) be a (Λ, p) -regular space. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $\delta(\Lambda, p)$ -closed;
- (2) $[f(U)]^{\delta(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every $r(\Lambda,p)$ -open set U of X;
- (3) for each subset B of Y and each (Λ, p) -open set U of X with $f^{-1}(B) \subseteq U$, there exists a $\delta(\Lambda, p)$ -open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U^{(\Lambda, p)}$;
- (4) for each point $y \in Y$ and each (Λ, p) -open set U of X with $f^{-1}(y) \subseteq U$, there exists a $\delta(\Lambda, p)$ -open set V of Y containing y such that $f^{-1}(V) \subseteq U^{(\Lambda,p)}$.

Proof. $(1) \Rightarrow (2)$: This is obvious.

(2) \Rightarrow (3): Let *B* be any subset of *Y* and *U* be (Λ, p) -open in *X* with $f^{-1}(B) \subseteq U$. Then, $f^{-1}(B) \cap [X - U^{(\Lambda,p)}]^{(\Lambda,p)} = \emptyset$ and hence

$$B \cap f([X - U^{(\Lambda, p)}]^{(\Lambda, p)}) = \emptyset.$$

Since $X - U^{(\Lambda,p)}$ is $r(\Lambda, p)$ -open, $B \cap [f(X - U^{(\Lambda,p)})]^{\delta(\Lambda,p)} = \emptyset$ by (2). Let $V = Y - [f(X - U^{(\Lambda,p)})]^{\delta(\Lambda,p)}$. Then, V is $\delta(\Lambda, p)$ -open such that $B \subseteq V$ and $f^{-1}(V) \subseteq X - f^{-1}([f(X - U^{(\Lambda,p)})]^{\delta(\Lambda,p)}) \subseteq X - f^{-1}(f(X - U^{(\Lambda,p)})) \subseteq U^{(\Lambda,p)}$. (3) \Rightarrow (4): This is obvious.

 $(4) \Rightarrow (1)$: Let K be any (Λ, p) -closed set of X and $y \in Y - f(K)$. Since $f^{-1}(y) \subseteq X - K$, there exists a $\delta(\Lambda, p)$ -open set V of Y such that $y \in V$ and $f^{-1}(V) \subseteq [Y - K]^{(\Lambda, p)} = X - K_{(\Lambda, p)}$ by (4). Then, we have $V \cap f(K_{(\Lambda, p)}) = \emptyset$ and hence $y \in Y - [f(K_{(\Lambda, p)})]^{\delta(\Lambda, p)}$. Thus, $[f(K_{(\Lambda, p)})]^{\delta(\Lambda, p)} \subseteq f(K)$. This shows that f is weakly $\delta(\Lambda, p)$ -closed.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, (1983), 77–90.
- [2] C. Boonpok, M. Thongmoon, $\delta(\Lambda, p)$ -open sets in topological spaces, Eur. J. Pure Appl. Math., 16, no. 3, (2023), 1533–1542.

- [3] C. Boonpok, J. Khampakdee, (Λ, sp) -open sets in topological spaces, Eur. J. Pure Appl. Math., **15**, no. 2, (2022), 572–588.
- [4] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15, no. 2, (2022), 415– 436.
- [5] M. Caldas, G. Navalagi, On generalizing δ -open functions, Pro Math., **22**, (2008), 101–119.
- [6] M. Caldas, G. Navalagi, On weak forms of preopen and preclosed functions, Archivum Math., 40, (2004), 119–128.
- [7] M. Ganster, S. Jafari, T. Noiri, On pre-Λ-sets and pre-V-sets, Acta Math. Hungar., 95, (2002), 337–343.
- [8] A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar., **41**, (1983), 213–218.
- [9] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, (1982), 47–53.
- [10] T. Noiri, A generalization of closed mappings, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur., (8), 54, (1973), 412–415.
- [11] P. Pue-on, C. Boonpok, Some properties of (Λ, p) -regular spaces, Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 295–299.
- [12] D. A. Rose, D. S. Janković, Weakly closed functions and Hausdorff spaces, Math. Nachr., 130, (1987), 105–110.
- [13] D. A. Rose, On weak openness and almost openness, Int. J. Math. Math. Sci., 7, (1984), 35–40.
- [14] N. Viriyapong, C. Boonpok, On (Λ, p) -extremally disconnected spaces, Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 289–293.