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Abstract

In this present work, we establish new fundamental uncertainty
principles for the fractional ambiguity function. These principles are
generalized forms of inequalities concerning the Fourier transform.

1 Introduction

The fractional Fourier transform is a powerful mathematical tool that ex-
tends the classical Fourier transform. It has been used in various fields in-
cluding signal processing, optics, and quantum mechanics. In [1, 2, 4], the
authors proposed the linear canonical ambiguity function, which is an exten-
sion of the ambiguity function using the linear canonical transform. Inspired
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by the idea, the authors [3] have generalized the ambiguity function to the
fractional Fourier transform called the fractional ambiguity function. They
investigated its properties and applied them in signal processing. However,
they did not publish yet the uncertainty principle related to the transforma-
tion. Therefore, the main objective of this paper is to propose the uncertainty
principles concerning the fractional ambiguity function (FrAF).

2 Main Result

In following, we introduce a definition of the fractional ambiguity function
(FrAF).

Definition 2.1. Let f,g € L? (R). The fractional ambiguity function (FrAF)
1s defined as
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where the kernel K (t,w) is given by
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It is easy to verify that the relation between the fractional ambiguity
function and the Fourier transform is
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where by (z,t) = f(t+ %) g (t — %)™ " and F{f} (w) = [5 f () e dt.

Theorem 2.2. Let f, g be two functions belonging to L*(R) such that || f|| ,2r) =
lgllz2m) = 1. Let T'C R x R be a measurable subset. If

/T/T ‘A?g (z,w)|dzdw > 1 -, (2.4)

then, for every & >0,

1
—=——HT),
\/27r|sin6’|'u( )

where (T is the Lebesgue measure of T.
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Proof. Using Holder inequality, we get
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For p =2 and ¢ = 2, we have

| Ay (z,0)] < 11 2 @y 191 L2 ey - (2.7)
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This implies that

1
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where || f| 2y = (Jg [f(2)[?dx)?. Thus the proof is complete. O

Theorem 2.3. Let f,g be two functions and f € L*(R). Then, for all
r e [1,00),
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Proof. According to the Cauchy-Schwarz inequality, we obtain

//“Afuh Z,w ‘Af2g2 Z,w ‘dwdw
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It is not difficult to check that
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Thus,
(// }Aflgl flf W AngQ (x w } del’);
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which completes the proof
%‘71
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Corollary 2.4. Let f,g be two functions. Then, for every f € L*(R) with

1

r € [2,00),
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Proof. For r = oo, we have
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For all r € [1, 00),
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Now putting s = 2r € [2, 00) yields
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This finishes the proof
Below we obtain a generalization of Theorem 2.2 mentioned above
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Theorem 2.5. With the notations of Theorem 2.3, for all r > 2, the follow-
(2.13)

u(T) = (1= &)7= (V2| sind)).
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ing inequality holds

r—2
T
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Proof. Applying Holder inequality, we obtain
(2.14)

1—53/T/T\A§i,g(x,w)\2dxdw
< (/R/R}Affg(x w)}zgdxdw)% (/R/R(XT(x,w))ﬁdwdx)

where 7 is the function of 7. Substituting relation (2.10) into the right-hand

sides of equation (2.14) yields
51 2
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For all r > 2, we get
1
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(1 —&)7=(v2n|sind]) < p(T).

Hence

This proves the theorem.
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