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Abstract

In this paper, we will construct a few types of graphs based on

the ideal-annihilator, right-ideal-annihilator, left-ideal-annihilator for

a KU-algebras. We will also study some graph invariants, such as

connectivity, regularity, and planarity for these graphs.

1 Introduction

The motivation of logical algebras arises from the work on BCI/BCK alge-
bras. These algebras were introduced by Imai and Iseki [4] as a generalization
of the set-theoretic difference and proportional calculi.
Algebraic combinatorics is an area of mathematics that employs methods of
abstract algebra in various combinatorial contexts and vice versa. Associat-
ing a graph to an algebraic structure is a research subject in this area and
it has attracted considerable attention. The research in this subject aims at
exposing the relationship between algebra and graph theory and at advanc-
ing the application of one to the other. The story goes back to a paper by
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Beck [1] in 1998, where he introduced the idea of a zero-divisor graph of a
commutative ring R with identity. He defined Γ(R) to be the graph whose
vertices are elements of R and in which two vertices are adjacent if and only
if xy = 0 Recently, Halas and Jukl [3] introduced the zero divisor graphs
of posets. In this paper, we deal with zero-divisor graphs of KU-algebras
based on an ideal. In 1966, Imai and Iseki [4] introduced the notion of BCK-
algebra. In the same year, Iseki [5] introduced BCI-algebra as a superclass of
the class of BCK- algebras. Jun and Lee [6] defined the notion of associated
graph of BCK- algebra and verified some properties of this graph. Tahmas-
bpour [9] studied chordality of the graph defined by Zahiri and Borzooei
and introduced four types of graphs of BCK-algebras which are constructed
by equivalence classes determined by an ideal I. Moreover, Tahmasbpour
[9] introduced some new graphs of BCK-algebras based on a fuzzy ideal µ1.
Futhermore, Tahmasbpour [10] introduced twelve kinds of graphs of lattice
implication algebras based on filter and LI-ideal.
A class of logical algebras, namely KU-algebras, was introduced by Prab-
payak and Leerawat [11]. Some basic algebraic properties like homomor-
phisms of KU-algebras and related structural properties were presented in
[11] and [12]. Later, the KU-algebras were studied by several authors and con-
tributed to the study through different means such as fuzzy, neutrosophic and
intuitionistic context, soft and rough sense, etc. Naveed et al. [13] have intro-
duced the notion of cubic KU-ideals of KU-algebras whereas Mostafa et al.
[14] defined fuzzy ideals of KU-algebras. Moreover, Mostafa et al. [15] stud-
ied Interval-valued fuzzy KU-ideals in KU-algebras. Moin and Ali introduced
roughness in KU-algebras [16]. Ali et al. [17] constructed a pseudo-metric
on KU-algebras and studied its properties. Senapati and Shum [18] defined
Atanassov’s intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra.
The next section is an introduction to a general theory of KU-algebras. We
will first discuss the notions of KU-algebras and then investigate their ele-
mentary and fundamental properties. Moreover, we will consider basic no-
tions, such as ideals and ideal annihilators among others. In the remaining
sections, we will study the graphs of KU-algebras which are constructed
from ideal-annihilator, denoted by φ1(X). We will also explore the graphs
of KU-algebras that are constructed from right ideal-annihilator, left ideal-
annihilator, denoted by ∆1(X) and Σ1(X). In the last section, we will in-
troduce the associated graph Y1(X) that is constructed from some binary
operations on the elements of KU-algebras.
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2 Preliminaries of KU-algebras and Graph

Theory

In this section, some basic definitions, notations and properties related to
KU-algebras are given.

Definition 2.1. [11] An algebra (X, �, 1) of type (2, 0) with a binary op-
eration � satisfying the following identities for any u, v, w ∈ X, is called a
KU-algebra.

(ku1) (u � v) � [(v � w) � (u � w)] = 1,
(ku2) u � 1 = 1,
(ku3) 1 � u = u,
(ku4) u � v = v � u = 1 implies u = v.

We denote a KU-algebra by (X, �, 1) and otherwise will be specified. For
simplicity, we will call X a KU-algebra. A fixed element 1 of X is called the
constant element. A partial order ” ≤ ” on X is defined as u ≤ v if and only
if v � u = 1.

Lemma 2.2. [11] (X, �, 1) is a KU-algebra if and only if it satisfies following
conditions:

(ku5) (v � w) � (u � w) ≤ u � v,
(ku6) 1 ≤ u,
(ku7) u ≤ v, v ≤ u implies u = v,

Lemma 2.3. [14] The following identities hold in any KU-algebra:
(1) w � w = 1,
(2) w � (u � w) = 1,
(3) u ≤ v implies v � w ≤ u � w,
(4) w � (v � u) = v � (w � u), for all u, v, w ∈ X,
(5) v � [(v � u) � u] = 1.

Example 1. [14] Consider a set X = {1, x, y, z, w} with the binary opera-
tion � defined by the given table

� 1 x y z w

1 1 x y z w
x 1 1 y z w
y 1 x 1 z z
z 1 1 y 1 y
w 1 1 1 1 1

It can be easily verified that X with a binary operation � forms a KU-algebra.
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Definition 2.4. [11] A KU-ideal I of a KU-algebra X is a non-empty subset
of X satisfying the following conditions:

(1) 1 ∈ I,
(2) u � v ∈ I, and u ∈ I ⇒ v ∈ I, for all u, v ∈ X.

Definition 2.5. An ideal P of X is called prime if (v � u) � u ∈ P implies
u ∈ P or v ∈ P.

Definition 2.6. A KU-algebra X is said to be a bounded KU-algebra if there
exists an element t ∈ X such that u ≤ t for all u ∈ X. The element t is said
to be the unit element of X. In a bounded KU-algebra, we use the notations
Nu = u � t and the set N(X) = {Nu|u ∈ X}.

Theorem 2.7. Let X be a bounded KU-algebra with a unit element t. Then
the following statements hold for any u, v ∈ X :

1. N1 = t and Nt = 1.

2. Nv �Nu ≤ u � v.

3. v ≤ u implies Nu ≤ Nv.

Proof. 1. By using (ku3) and Lemma 2.3(1), N1 = 1�t = t and Nt = t�t = 1.
2. Nv �Nu = (v � t) � (u � t) ≤ u � v by (ku5).
3. If v ≤ u, then, by Lemma 2.3(3), we get u � t ≤ v � t = Nu ≤ Nv.

Definition 2.8. In a KU-algebra X, we define u∧v = (v �u) �u, and u∨v =
N(Nu ∧Nv).

Definition 2.9. [2]G = (V (G), E(G)) is called a graph where V (G) is called
the set of vertices and E(G) is called the set of edges of G.

In this article, we will consider only simple graphs. A simple graph is a graph
with no multiple edges and loops.

Definition 2.10. A graph H is called a subgraph of a graph G if V (H) ⊆
V (G) and E(H) ⊆ E(G).

Definition 2.11. A complete graph G is graph in which two distinct vertices
are adjacent by exactly one edge. The greatest induced complete subgraph in
a graph G is called a clique of G. If a graph G has a clique with n elements,
then we say that the graph G has clique number n and we write ω(G) = n.
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Definition 2.12. If there is a path connecting any two vertices in a graph
G, then it is said to be connected; otherwise, it is said to be not connected.
Let d(u, v) be the length of the shortest path between u to v for any distinct
vertices u and v of G. If there is no such path, then we define d(x, y) → ∞.

Definition 2.13. The neighborhood of a vertex v ∈ V (G) is the set NG(v) =
{x ∈ V (G)| xv ∈ E(G)}. Moreover, |NG(v)| is called the degree of vertex v.
A graph G is said to be a regular of degree d if every vertex has degree d.
Furthermore, for distinct vertices u and v, the notation u−v is used to show
that there is a path between u and v.

Definition 2.14. [1] We say that the chromatic number of G is K and
write χ(G) = K if K is the minimum number of colors needed to color the
vertices of G so that no two adjacent vertices share the same color. Note
that χ(G) ≥ ω(G).

Definition 2.15. [2] An Euler path in G is a closed walk in a graph G that
contains all of G’s edges. An Euler graph is a graph that contains an Euler
line. An Euler graph is a connected graph because the Euler line (which is a
walk) comprises all of the graph’s edges. The connected graphG is Eulerian if
and only if all of its vertices are of even degree, according to Euler’s theorem.

Definition 2.16. [2] A subdivision of a graph is a graph that is obtained by
replacing edges with pathways from the original graph. If a graph G can be
drawn in a plane without the edges crossing, then it is said to be planar.

Redrawing the edges in such a way that no edges cross is equivalent to
proving that a graph is planar. The vertices may need to be moved around,
and the edges will have to be drawn in a very indirect manner. A finite
graph is planar if and only if it does not contain a subdivision of K5 or K3,3,
according to Kuratowski’s theorem. Any planar graph has a clique number
of less than or equal to four.

Definition 2.17. [8] Assume that G is a planar graph. A face of a graph is
a region that is bounded by its edges. If an undirected graph can be drawn in
the plane without crossing in such a way that all of the vertices belong to the
drawing’s unbounded face, then it is called an outer planar graph. A graph
is said to be outer planar if and only if it does not contain a subdivision of
K4 or K2,3.

Definition 2.18. [7] If a surface is homeomorphic to a sphere with g handles
or equivalently holes, then the number g is called the genus of the surface.
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In addition, the genus g of a graph G is the smallest genus of all surfaces,
allowing the graph G to be drawn on it without any edge crossing. Because
the genus of a plane is zero, the graphs of genus zero are exactly planar
graphs. The graphs that can be drawn on a torus without edge-crossing are
called toroidal. They have a genus of one since the genus of a torus is one.
The genus of a graph G is denoted by y(G).

Theorem 2.19. [2] Let m and n be two positive integers. We have:

1. γ(Kn) = ⌈(1/12)(n− 3)(n− 4)⌉ if n ≥ 3,

2. γ(Km,n) = ⌈(1/4)(m− 2)(n− 2)⌉ if m,n ≥ 2

3 Graphs Based on the Ideal-annihilator

In this section, we will define a few graphs on the ideals of a KU-algebra and
will discuss properties of those graphs.

Definition 3.1. For a nonempty subset A of a KU-algebra X and an ideal
I of X, the set of all zero-divisors of A by I is defined as:

AnnI(A) = {u ∈ X| a � u ∈ I or u � a ∈ I, ∀a ∈ A}.

Proposition 3.2. For any two nonempty subsets A and B of a KU-algebra
X and an ideal I of X, the following hold:

1. {1} ⊆ AnnI(A).

2. I ⊆ AnnI(A).

3. If A ⊆ B, then AnnIB ⊆ AnnI(A).

4. If 1 ∈ A, then AnnI(A) = Ann1(A− {1}).

5. AnnI(I) = X.

6. If I = {1}, then AnnI(A) = {x| x is comparable to every element in A}.

Proof. 1. By (ku2) and Definition 2.4 (1), a � 1 = 1 ∈ I for all a ∈ A and
hence {1} ⊆ AnnI(A).

2. Let u ∈ I. Then, by Definition 2.1, we have a � u ∈ I, ∀a ∈ A. Also,
1 � u = 0, ∀u ∈ X, So I ∪ {1} ⊆ AnnI(A).
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3. Suppose that u ∈ AnnIB. Then b � u ∈ I or u � b ∈ I, ∀b ∈ B. But
A ⊆ B. Therefore, b � u ∈ I or u � b ∈ I, ∀b ∈ A; i.e., u ∈ AnnI(A).
Hence AnnIB ⊆ AnnI(A).

4. According to Definition 2.1 we have AnnI(A) = ∩a∈AAnnIa. Also,
AnnI{1} = X. Then AnnI(A) = AnnI(A− {1}).

5. Let u ∈ X. By Definition 2.1, u � a ∈ I, ∀a ∈ I. Then u ∈ AnnI(I) and
so AnnI(I) = X.

6. Follows from the definitions.

Definition 3.3. Let I be an ideal of X. Then φI(X) is a simple graph, with
vertex set X and two distinct vertices x and y being adjacent if and only if
AnnI{x, y} = I ∪ {1}.

Theorem 3.4. Let I be an ideal of X, then NG({1}) = φ, where G = φI(X).

Proof. We know that AnnI{1} = X and for all x ∈ X, x 6= 1, we have I ∪
{x, 1} ⊆ AnnI{x}. Then I ∪{x, 1} ⊆ AnnI{x} and I ∪{x, 1} ⊆ AnnI{x, 1},
for all x ∈ X, x 6= 1. So, by Definition 2.1 of graph φI(X), for all x ∈ X, x 6=
1, x is connected to element 1 if and only if x ∈ I, if x ∈ I. By Proposition
3.2, AnnI{x} = X. So the element 1 is not connected to x, for all x ∈ X.

Theorem 3.5. Let X = {1} ∪ Atom(X). I = {1} is an ideal of X.

Proof. We know Ann{1}{1} = X by Proposition 3.2 since X = Atom(X) ∪
{1}, we have, for all X ∈ Atom(X), Ann{1}{x} = {1, x}. On the other hand
we know Ann{1}{x, y} = Ann{1}{x} ∩ Ann{1}{y}. Then by Definition 3.3 of
graph φ{1}(X), x and y are adjacent if and only if x, y ∈ Atom(X).

Theorem 3.6. Let X = {1} ∪ Atom(X). Then
ω(φ{1}(X)) = |Atom(X)|.

Proof. It follows from Theorem 3.5.

Theorem 3.7. Let I = {1} be an ideal of X. Then
NG(x) = {y; y is not comparable with x}, where G = φI(X), x 6= 1.

Proof. For all x ∈ X, x 6= 1, we have
Ann{1}{x} = {y; y is not comparable with x}.
On the other hand, Ann{1}{x, y} = Ann{1}{x} ∩ Ann{1}{y}. Then by Defi-
nition 3.3 of graph φ{1}(X), x and y are adjacent if and only if x and y are
not comparable with each other.
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Theorem 3.8. Let I be an ideal of X. Then α(φI(X)) ≥ |I|.

Proof. We suppose that x, y ∈ I. By Proposition 3.2(5), AnnI{x} = X and
AnnI{y} = X. Therefore, by Definition 3.3 of graph φI(X), y �x /∈ E(φI(x)).
Consequently, α(φI(X)) ≥ |I|.

Theorem 3.9. Let |X| > 2 and I be a prime ideal of X. Then φI(X) is an
empty graph.

Proof. Suppose, on the contrary, that φI(X) is not an empty graph. Then
there exist x, y ∈ X, such that xy ∈ E(φI(X)). So, by Definition 3.3 of graph
φI(X), we have AnnI{x, y} = I ∪{1}. On the other hand, since |X − I| > 1,
we can choose z ∈ X, z /∈ 1, z 6= 1. Since I is a prime ideal, x � z ∈ I or
z � x ∈ I, and y � z ∈ I or z � y ∈ I. Hence z ∈ AnnI{x, y}, which is a
contradiction.

4 Graphs of KU-algebras Based on Left and

Right Ideal-annihilator

Definition 4.1. Let I be an ideal of X. Then the sets AnnR
I {x} = {y ∈

X ; x �y ∈ I}, AnnL
I {x} = {y ∈ X ; y � x ∈ I} are called right-ideal-annihilator

and left-ideal-annihilator of x, respectively.

Definition 4.2. Let I be an ideal of X. Then ΣI(X) and ∆I(X) are two
simple graph with vertex set X and two distinct vertices x and y being adja-
cent in ΣI(X) if and only if AnnR

I {x} ⊆ AnnR
I {y} or AnnR

I {y} ⊆ AnnR
I {x}.

Also, there is an edge between x and y in the graph ∆I(X) if and only if
AnnL

I {x} ⊆ AnnL
I {y} or AnnL

I {y} ⊆ AnnL
I {x}.

Example 2. Let X = {1, a, b, c, d} and the operation � is given by the fol-
lowing table:

� 1 a b c d

1 1 a b c d
a 1 1 a c c
b 1 1 1 c c
c 1 1 a 1 a
d 1 1 1 1 1

It is clear that (X, �, 1) is a bounded KU-algebra of X.
We can see the graphs Σ{1}(X) and ∆{1}(X) will represent the same graph,
K5 \ {bc}.
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Proposition 4.3. Let I be an ideal of X. Then the following statements
hold:

1. ω(ΣI(X)) ≥ max{|A|;A is a chain inX}

2. ω(∆I(X)) ≥ max{|A|;A is a chain inX}

Proof. 1. According to Definition 2.1 if x ≤ y, then z � x ≤ z � y. On
the other hand, we let x ≤ y, z ∈ AnnR

I {y}. Then, by Definition 4.1,
z � y ∈ I. Therefore, by Definition 2.4, z � x ∈ I. Hence z ∈ AnnR

I {x}
and so AnnR

I {y} ⊆ AnnR
I {x}, x � y ∈ E(ΣI(X)).

2. Similar to part (1).

Theorem 4.4. Let I be an ideal X. Then the following statements hold:

1. ΣI(X) is connected, diam(ΣI(X)) ≤ 2, gr(ΣI(X)) = 3.

2. ∆I(X) is connected, diam(∆I(X)) ≤ 2, gr(∆I(X)) = 3.

Proof. 1. For all x ∈ X, x ≤ 1. By Proposition 4.3, the element 1 is
connected to every element in X. Therefore, ΣI(X) is connected and
hence diam(ΣI(X)) ≤ 2. Finally, gr(ΣI(X)) = 3.

2. Similar to part (1).

Theorem 4.5. Let I be an ideal of X. Then the following statements hold:

1. ΣI(X) is regular if and only if it is complete.

2. ∆I(X) is regular if and only if it is complete.

Proof. 1. Suppose that ΣI(X) is regular. Since deg(1) = |X| − 1, for all
x ∈ X, deg(x) = |X|−1. Hence ΣI(X) is a complete graph. Conversely,
a complete graph is always regular.

2. Similar to part (1).

Proposition 4.6. Let X be a chain and let I be an ideal of X. Then the
graphs ΣI(X) and ∆I(X) are planar if and only if |X| ≤ 4.
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Proof. Using Proposition 4.3, the graphs ΣI(X) and ∆I(X) are complete
graphs of K2 and K3 for |x| = 3 and |X| = 4, respectively and hence they
are planar for |X| ≤ 4. Now if |X| ≥ 5, then ΣI(X) and ∆I(X) have a
subgraph isomorphic to K5. Consequently, by Kuratowski’s Theorem, the
graphs ΣI(X) and ΣI(X) are not planar. Conversely, we know that K5

has five vertices. Hence if any graph ΣI(X) or ∆I(X) is not planar, the
graphs ΣI(X) and ΣI(X), (X), have at least five vertices, which is contrary
to |X| ≤ 4.

Proposition 4.7. Let X be a chain and let I be an ideal of X. Then the
graphs ΣI(X) and ∆I(X) are outer planar graphs if and only if |X| ≤ 3.

Proof. According to Proposition 4.3, the graphs ΣI(X) and ∆I(X) are com-
plete graphs. Now, if |X| ≥ 4, then both graphs ΣI(X) and ∆I(X) have a
subgraph that is isomorphic to K4. By Definition 2.17, the graphs ΣI(X) and
∆I(X) are not outer planar. Since K4 has four vertices, if any of the graphs
ΣI(X) or ∆I(X) is not outer planar, then the graphs ΣI(X) and ∆I(X),
have at least four vertices, respectively, which is contrary to the fact that
|X| ≤ 3.

Proposition 4.8. Let X be a chain and let I be an ideal of X. Then the
graphs ΣI(X) and ∆I(X) are toroidal graphs if and only if |X| ≤ 7.

Proof. By using Proposition 4.3, the graphs ΣI(X) and ∆I(X) are complete
graphs. If |X| ≥ 8, then both graphs ΣI(X) and ∆I(X) have a subgraph
that is isomorphic to K8. Now, by Theorem 2.19, both graphs ΣI(X) and
∆I(X) are not toroidal. Conversely, since K8 has eight vertices, both graphs
ΣI(X) and ∆I(X) are not toroidal and so both graphs ΣI(X) and ∆I(X)
have at least eight vertices, which is contrary to the fact that |X| ≤ 7.

5 Graphs on the Ideals of KU-algebras Based

on the Binary Operations ∧

For this section, we assume that the setX represents a bounded commutative
KU-algebra.

Definition 5.1. Let I be an ideal of X. Then we construct a simple graph
ΥI(X) with vertex set X and two distinct vertices x and y are adjacent if
and only if x ∧ y ∈ I.
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Lemma 5.2. Let I be an ideal of X. Then deg(x) = |X| − 1 for all x ∈ I in
the graph ΥI(X).

Proof. Let x ∈ I and let y be an arbitrary element of X. Then (x � y) � y ∈ I.
Since (x � y) � y ≤ x, as I is an ideal of X, y � x ∈ E(ΥI(X)).

Theorem 5.3. Let I be an ideal of X. Then the graph ΥI(X) is regular if
and only if it is complete.

Proof. Let ΥI(X) be a regular graph. By Lemma 5.2, we have deg(1) =
|X|−1. Since ΥI(X) is regular, for any x ∈ X, deg(x) = |X|−1. This means
that ΥI(X) is a complete graph. Conversely, a complete graph is always
regular.

The following Proposition 5.4 and Theorem 5.5 follow from Lemma 5.2.

Proposition 5.4. Let I be an ideal of X. Then ω(YI(X)) ≥ |I|.

Theorem 5.5. Let I be an ideal of X. Then ΥI(X) is connected and
diam(ΥI(X)) ≤ 2.

Theorem 5.6. Let I be an ideal of X. Then gr(ΥI(X)) = 3.

Proof. Let a 6= 1 be an element in I and let x be an arbitrary element in X.
Then it is easy to see that 1− a− x− 1 is a cycle of length 3 in ΥI(X).

Proposition 5.7. Let I be an ideal of X. Then the following statements
hold:

1. If ΥI(X) is planar, then |I| ≤ 4.

2. If ΥI(X) is outer planar, then |I| ≤ 3.

3. If ΥI(X) is toroidal, then |I| ≤ 7.

Proof. 1. From Lemma 5.2, it follows that the graph ΥI(X) is a complete
graph on I. If |I| ≥ 5, then ΥI(X) has a subgraph isomorphic to K5,
By Kuratowski’s theorem, the graph ΥI(X) is not planar.

2. By Lemma 5.2, the graph ΥI(X) is a complete graph on I. If |I| ≥ 4,
then ΥI(X) has a subgraph isomorphic to K4. By Definition 2.17, the
graph ΥI(X) is not outer planar.
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3. Again by Lemma 5.2, the graph ΥI(X) is a complete graph on I. If
|I| ≥ 7, then ΥI(X) has a subgraph isomorphic to K8. By Theorem
2.19, the graph ΥI(X) is not toroidal.

Theorem 5.8. For any ideal I of X if ΥI(X) is an Euler graph, then |X|
is odd.

Proof. According to Lemma 5.2, for all x ∈ I, the deg(x) = |X|−1. If ΥI(X)
is an Euler graph, then the degree of every vertex in I is even. Consequently,
|X| is odd.

Theorem 5.9. For any ideal I of X, if I = ∩1≤i≤nPi and for each 1 ≤ j ≤ n,
the ideal I 6= ∩1≤i≤n,i 6=jPi, where Pi are prime ideals of X, then ω(YI(X)) =
n = χ(YI(X)).

Proof. For each j with 1 ≤ j ≤ n, consider an element xj in (∩1≤i≤n,i 6=jPi)−
Pj. We have A = {x1, ..., xn} is a clique in ΥI(X). Hence ω(ΥI(X)) ≥ n.
Now, we prove that χ(ΥI(X)) ≤ n. Define a coloring f by putting f(x) =
min{i; x /∈ Pi}. Let f(x) = k, x and y be adjacent vertices. So x /∈ Pk

and x ∧ y ∈ I. Since Pk is prime, y ∈ Pk, and so f(y) 6= k. Now, since
ω(Υ1(X)) ≤ χ(ΥI(X)), the result holds.

Theorem 5.10. For any ideal I of X, if I = ∩j∈JPj , where Pj are prime
ideals of X and J is an infinite set for each i ∈ J, also I 6= ∩j 6=iPj, then
ω(ΥI(X)) = ∞ = χ(ΥI(X)).

Proof. For each i ∈ J, there exists xi ∈ (∩j 6=iPj−Pi). It can be easily seen that
the set of xi forms an infinite clique in ΥI(X). Since ω(ΥI(X)) ≤ χ(ΥI(X)),
the assertion holds.

6 Conclusion

In this article we have studied and discussed ideal-annihilator, right-ideal-
annihilator, left-ideal-annihilator for a KU-algebra. Moreover, construction
of some main types of graphs in a bounded KU-algebra (X, �, 0) based on
ideals that are denoted by φ1(X), ∆1(X) and Σ1(X) were taken under con-
sideration. Furthermore, basic graphical properties such as connectivity, reg-
ularity, and planarity on the structure of these graphs were investigated. Fi-
nally, we have constructed the graph YI(X) and have studied its properties
with these aspects.
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