International Journal of Mathematics and ( M)
Computer Science, 19(2024), no. 2, 381-394 G5

On Some Graphs Based on the Ideals of
KU-algebras

Ali H. Hakami, Moin A. Ansari, Azeem Haider

Department of Mathematics
College of Science

Jazan University
Jazan 45142, Saudi Arabia

email: aalhakami@jazanu.edu.sa, maansariQjazanu.edu.sa,
aahaider@jazanu.edu.sa

(Received September 3, 2023, Accepted October 4, 2023,
Published November 10, 2023)

Abstract

In this paper, we will construct a few types of graphs based on
the ideal-annihilator, right-ideal-annihilator, left-ideal-annihilator for
a KU-algebras. We will also study some graph invariants, such as
connectivity, regularity, and planarity for these graphs.

1 Introduction

The motivation of logical algebras arises from the work on BCI/BCK alge-
bras. These algebras were introduced by Imai and Iseki [4] as a generalization
of the set-theoretic difference and proportional calculi.

Algebraic combinatorics is an area of mathematics that employs methods of
abstract algebra in various combinatorial contexts and vice versa. Associat-
ing a graph to an algebraic structure is a research subject in this area and
it has attracted considerable attention. The research in this subject aims at
exposing the relationship between algebra and graph theory and at advanc-
ing the application of one to the other. The story goes back to a paper by
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Beck [1] in 1998, where he introduced the idea of a zero-divisor graph of a
commutative ring R with identity. He defined I'(R) to be the graph whose
vertices are elements of R and in which two vertices are adjacent if and only
if xy = 0 Recently, Halas and Jukl [3] introduced the zero divisor graphs
of posets. In this paper, we deal with zero-divisor graphs of KU-algebras
based on an ideal. In 1966, Imai and Iseki [4] introduced the notion of BCK-
algebra. In the same year, Iseki [5] introduced BCl-algebra as a superclass of
the class of BCK- algebras. Jun and Lee [6] defined the notion of associated
graph of BCK- algebra and verified some properties of this graph. Tahmas-
bpour [9] studied chordality of the graph defined by Zahiri and Borzooei
and introduced four types of graphs of BCK-algebras which are constructed
by equivalence classes determined by an ideal I. Moreover, Tahmasbpour
[9] introduced some new graphs of BCK-algebras based on a fuzzy ideal pu;.
Futhermore, Tahmasbpour [10] introduced twelve kinds of graphs of lattice
implication algebras based on filter and LI-ideal.

A class of logical algebras, namely KU-algebras, was introduced by Prab-
payak and Leerawat [11]. Some basic algebraic properties like homomor-
phisms of KU-algebras and related structural properties were presented in
[11] and [12]. Later, the KU-algebras were studied by several authors and con-
tributed to the study through different means such as fuzzy, neutrosophic and
intuitionistic context, soft and rough sense, etc. Naveed et al. [13] have intro-
duced the notion of cubic KU-ideals of KU-algebras whereas Mostafa et al.
[14] defined fuzzy ideals of KU-algebras. Moreover, Mostafa et al. [15] stud-
ied Interval-valued fuzzy KU-ideals in KU-algebras. Moin and Ali introduced
roughness in KU-algebras [16]. Ali et al. [17] constructed a pseudo-metric
on KU-algebras and studied its properties. Senapati and Shum [18] defined
Atanassov’s intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra.

The next section is an introduction to a general theory of KU-algebras. We
will first discuss the notions of KU-algebras and then investigate their ele-
mentary and fundamental properties. Moreover, we will consider basic no-
tions, such as ideals and ideal annihilators among others. In the remaining
sections, we will study the graphs of KU-algebras which are constructed
from ideal-annihilator, denoted by ¢1(X). We will also explore the graphs
of KU-algebras that are constructed from right ideal-annihilator, left ideal-
annihilator, denoted by A;(X) and X;(X). In the last section, we will in-
troduce the associated graph Y;(X) that is constructed from some binary
operations on the elements of KU-algebras.
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2 Preliminaries of KU-algebras and Graph
Theory

In this section, some basic definitions, notations and properties related to
KU-algebras are given.

Definition 2.1. [11] An algebra (X,.,1) of type (2,0) with a binary op-
eration . satisfying the following identities for any u,v,w € X, is called a
KU-algebra.

(kul) (wav)+[(vew)(u.w)| =1,

(ku2) u.1=1,

(ku3) 1.u = u,

(kud) w.v =v.u =1 implies u = v.

We denote a KU-algebra by (X, ., 1) and otherwise will be specified. For
simplicity, we will call X a KU-algebra. A fixed element 1 of X is called the
constant element. A partial order 7 <” on X is defined as u < v if and only
fv.uw=1.

Lemma 2.2. [11] (X,., 1) is a KU-algebra if and only if it satisfies following
conditions:

(kub) (vew). (wew) <uawv,

(ku6) 1 < u,

(ku7) u <wv, v < u implies u = v,

Lemma 2.3. [14] The following identities hold in any KU-algebra:
(1) wew =1,
(2) we(uaw)=1,
(3) u < v implies v.w < u.w,
(4) w.(w.u)=v.(w.u), for all u,v,w € X,
(5) va[(veu).u]=1.

Example 1. [14] Consider a set X = {1,z,y,z,w} with the binary opera-
tion . defined by the given table

Jtlelylz]w
1{ljxz|y|z|w
z|1|1]y|lz|w
yllljx|1l]z|z
2|11yl 1l]y
wil|1]1]1]1

It can be easily verified that X with a binary operation . forms a KU-algebra.
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Definition 2.4. [11] A KU-ideal I of a KU-algebra X is a non-empty subset
of X satisfying the following conditions:

(1) 1e1,

(2) wavel,anduel =vel, foraluvelX.

Definition 2.5. An ideal P of X is called prime if (v.u).u € P implies
ue P orveP.

Definition 2.6. A KU-algebra X is said to be a bounded KU-algebra if there
exists an elementt € X such that u <t for all w € X. The element t is said

to be the unit element of X. In a bounded KU-algebra, we use the notations
Nu=wu.t and the set N(X) = {Nu|u € X}.

Theorem 2.7. Let X be a bounded KU-algebra with a unit elementt. Then
the following statements hold for any u,v € X :

1. N1 =t and Nt = 1.
2. Nv.Nu<u.v.
3. v < u implies Nu < Nv.

Proof. 1. By using (ku3) and Lemma 2.3(1), N1 = 1.t =t and Nt = t.t = 1.
2. NveNu=(vit)s(ust) <wu.v by (kub).
3. If v <, then, by Lemma 2.3(3), we get u.t <v.t = Nu < Nv. O

Definition 2.8. In a KU-algebra X, we define uAv = (vau)au, and uVov =
N(Nu A Nv).

Definition 2.9. 2] G = (V(G), E(GQ)) is called a graph where V(G) is called
the set of vertices and E(G) is called the set of edges of G.

In this article, we will consider only simple graphs. A simple graph is a graph
with no multiple edges and loops.

Definition 2.10. A graph H is called a subgraph of a graph G if V(H) C
V(G) and E(H) C E(G).

Definition 2.11. A complete graph G is graph in which two distinct vertices
are adjacent by exactly one edge. The greatest induced complete subgraph in
a graph G is called a clique of G. If a graph G has a clique with n elements,
then we say that the graph G has clique number n and we write w(G) = n.



On Some Graphs Based on the Ideals of KU-algebras 385

Definition 2.12. If there is a path connecting any two vertices in a graph
G, then it is said to be connected; otherwise, it is said to be mot connected.
Let d(u,v) be the length of the shortest path between u to v for any distinct
vertices u and v of G. If there is no such path, then we define d(z,y) — oo.

Definition 2.13. The neighborhood of a vertex v € V(G) is the set Ng(v) =
{zx € V(G)| zv € E(G)}. Moreover, |Ng(v)| is called the degree of vertex v.
A graph G is said to be a reqular of degree d if every vertex has degree d.
Furthermore, for distinct vertices u and v, the notation u—v is used to show
that there is a path between u and v.

Definition 2.14. [1] We say that the chromatic number of G is K and
write x(G) = K if K is the minimum number of colors needed to color the

vertices of GG so that no two adjacent vertices share the same color. Note
that (@ > w(G).

Definition 2.15. [2] An Euler path in G is a closed walk in a graph G that
contains all of G’s edges. An Euler graph is a graph that contains an Euler
line. An Euler graph is a connected graph because the Euler line (which is a
walk) comprises all of the graph’s edges. The connected graph G is Eulerian if
and only if all of its vertices are of even degree, according to Euler’s theorem.

Definition 2.16. [2] A subdivision of a graph is a graph that is obtained by
replacing edges with pathways from the original graph. If a graph G can be
drawn in a plane without the edges crossing, then it is said to be planar.

Redrawing the edges in such a way that no edges cross is equivalent to
proving that a graph is planar. The vertices may need to be moved around,
and the edges will have to be drawn in a very indirect manner. A finite
graph is planar if and only if it does not contain a subdivision of K5 or K33,
according to Kuratowski’s theorem. Any planar graph has a clique number
of less than or equal to four.

Definition 2.17. [8] Assume that G is a planar graph. A face of a graph is
a region that is bounded by its edges. If an undirected graph can be drawn in
the plane without crossing in such a way that all of the vertices belong to the
drawing’s unbounded face, then it is called an outer planar graph. A graph

is said to be outer planar if and only if it does not contain a subdivision of
K4 or Kg’g.

Definition 2.18. [7] If a surface is homeomorphic to a sphere with ¢ handles
or equivalently holes, then the number ¢ is called the genus of the surface.
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In addition, the genus g of a graph G is the smallest genus of all surfaces,
allowing the graph G to be drawn on it without any edge crossing. Because
the genus of a plane is zero, the graphs of genus zero are exactly planar
graphs. The graphs that can be drawn on a torus without edge-crossing are
called toroidal. They have a genus of one since the genus of a torus is one.
The genus of a graph G is denoted by y(G).

Theorem 2.19. [2| Let m and n be two positive integers. We have:
1. y(K,) = [(1/12)(n — 3)(n — 4)] if n > 3,
2. Y(Kmpn) = [(1/4)(m = 2)(n—2)] if m,n > 2

3 Graphs Based on the Ideal-annihilator

In this section, we will define a few graphs on the ideals of a KU-algebra and
will discuss properties of those graphs.

Definition 3.1. For a nonempty subset A of a KU-algebra X and an ideal
I of X, the set of all zero-divisors of A by I is defined as:

Annj(A) ={u e X|a.u €l oru.a € 1,Va € A}.

Proposition 3.2. For any two nonempty subsets A and B of a KU-algebra
X and an ideal I of X, the following hold:

1. {1} C Anny(A).

I C Anny(A).

If AC B, then Ann;B C Anny(A).

If1€ A, then Anng(A) = Anny(A — {1}).
Anny(I) = X.

S Gt e

If I = {1}, then Ann;(A) = {x| x is comparable to every element in A}.

Proof. 1. By (ku2) and Definition 2.4 (1), a.1=1¢€ [ for all a € A and
hence {1} C Ann;(A).

2. Let u € I. Then, by Definition 2.1, we have a.u € I,Va € A. Also,
leu=0,Yu e X, So TU{1} C Ann;(A).
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3. Suppose that u € Ann;B. Then b.u € [ or u.b € I, Vb € B. But
A C B. Therefore, bau € I or u.b € I,VYb € A;ie., u € Anns(A).
Hence Ann;B C Ann;(A).

4. According to Definition 2.1 we have Annj(A) = NgeaAnnra. Also,
Ann{1} = X. Then Ann;(A) = Ann;(A — {1}).

5. Let u € X. By Definition 2.1, u.a € I,Va € I. Then u € Ann;(I) and
so Ann;(I) = X.

6. Follows from the definitions.
]

Definition 3.3. Let I be an ideal of X. Then ¢;(X) is a simple graph, with
vertex set X and two distinct vertices x and y being adjacent if and only if
Annp{z,y} = T U{1}.

Theorem 3.4. Let I be an ideal of X, then Ng({1}) = ¢, where G = ¢;(X).

Proof. We know that Ann;{1} = X and for all x € X,z # 1, we have [ U
{z,1} C Ann{z}. Then TU{x,1} C Ann;{z} and TU{z,1} C Ann,;{z, 1},
for all x € X,z # 1. So, by Definition 2.1 of graph ¢;(X), for all z € X, x #
1,z is connected to element 1 if and only if z € I, if x € I. By Proposition
3.2, Ann{x} = X. So the element 1 is not connected to z, for all x € X. O

Theorem 3.5. Let X = {1} U Atom(X). I = {1} is an ideal of X.

Proof. We know Anng3{1} = X by Proposition 3.2 since X = Atom(X) U
{1}, we have, for all X € Atom(X), Anngy{z} = {1,2}. On the other hand
we know Anngy{z,y} = Anngy{z} N Anngy{y}. Then by Definition 3.3 of
graph ¢g3(X), « and y are adjacent if and only if z,y € Atom(X). O

Theorem 3.6. Let X = {1} U Atom(X). Then
w(6(1)(X)) = [ Atom(X)|.

Proof. 1t follows from Theorem 3.5. O

Theorem 3.7. Let [ = {1} be an ideal of X. Then
Ne(z) = {y;y is not comparable with x}, where G = ¢;(X),x # 1.

Proof. For all x € X, x # 1, we have

Anng{z} = {y;y is not comparable with }.

On the other hand, Anngy{z,y} = Anngy{z} N Anngy{y}. Then by Defi-
nition 3.3 of graph ¢(13(X), = and y are adjacent if and only if 2 and y are
not comparable with each other. O
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Theorem 3.8. Let I be an ideal of X. Then a(¢p;(X)) > |I|.

Proof. We suppose that =,y € I. By Proposition 3.2(5), Ann;{z} = X and
Ann;{y} = X. Therefore, by Definition 3.3 of graph ¢;(X), y.x ¢ E(¢;(x)).
Consequently, a(¢;(X)) > |I]. O

Theorem 3.9. Let | X| > 2 and I be a prime ideal of X. Then ¢;(X) is an
empty graph.

Proof. Suppose, on the contrary, that ¢;(X) is not an empty graph. Then
there exist z,y € X, such that xy € E(¢;(X)). So, by Definition 3.3 of graph
¢1(X), we have Ann{x,y} = I U{1}. On the other hand, since | X —I| > 1,
we can choose z € X,z ¢ 1,z # 1. Since [ is a prime ideal, x .2 € I or
zex € [,and y.z € T or z.y € I. Hence z € Ann;{x,y}, which is a
contradiction. O

4 Graphs of KU-algebras Based on Left and
Right Ideal-annihilator

Definition 4.1. Let I be an ideal of X. Then the sets Annf{z} = {y €
X;zwy € I}, Annt{x} = {y € X;y.x € I} are called right-ideal-annihilator
and left-ideal-annihilator of x, respectively.

Definition 4.2. Let I be an ideal of X. Then (X)) and A;(X) are two
simple graph with verter set X and two distinct vertices x and y being adja-
cent in X1(X) if and only if Annf{z} C Annf{y} or Anni{y} C Annf{z}.
Also, there is an edge between x and y in the graph Ap(X) if and only if
Annt{x} C Annt{y} or Annt{y} C Annt{z}.

Example 2. Let X = {1,a,b,¢,d} and the operation . is given by the fol-
lowing table:

- 1]alb]|c]d
1|1la|b|c|d
alll|l]lalc]|ec
bll1|1]1]c|c
cl|l1]|1]lal|l]a
dil1]1]1(1]1

It is clear that (X,., 1) is a bounded KU-algebra of X.
We can see the graphs X3 (X) and Agqy(X) will represent the same graph,

Ks \ {bc}.
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Proposition 4.3. Let I be an ideal of X. Then the following statements
hold:

1. w(X(X)) > max{|Al|; Aisachainin X}
2. w(A(X)) > max{|A|; Aisachainin X}

Proof. 1. According to Definition 2.1 if x < y, then z.2 < z.y. On
the other hand, we let © < y,2 € Annf{y}. Then, by Definition 4.1,
z .y € I. Therefore, by Definition 2.4, z .z € I. Hence z € Annf{x}
and so Annf{y} C Annf{z},x.y € E(3;(X)).

2. Similar to part (1).
U

Theorem 4.4. Let I be an ideal X. Then the following statements hold:
1. ¥1(X) is connected, diam(2X7(X)) < 2, gr(X;(X)) = 3.
2. Ar(X) is connected, diam(A;(X)) <2, gr(Ar(X)) =3.

Proof. 1. For all x € X,z < 1. By Proposition 4.3, the element 1 is
connected to every element in X. Therefore, ¥;(X) is connected and
hence diam(X;(X)) < 2. Finally, gr(3;(X)) = 3.

2. Similar to part (1).
U

Theorem 4.5. Let I be an ideal of X. Then the following statements hold:

1. X(X) is regular if and only if it is complete.

2. Ar(X) is reqular if and only if it is complete.

Proof. 1. Suppose that 3;(X) is regular. Since deg(1) = |X| — 1, for all
z € X,deg(z) = | X|—1. Hence X;(X) is a complete graph. Conversely,
a complete graph is always regular.

2. Similar to part (1).
U

Proposition 4.6. Let X be a chain and let I be an ideal of X. Then the
graphs X1(X) and Ar(X) are planar if and only if | X| < 4.
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Proof. Using Proposition 4.3, the graphs ¥;(X) and A;(X) are complete
graphs of Ky and Kj for |x| = 3 and |X| = 4, respectively and hence they
are planar for |X| < 4. Now if |X| > 5, then ¥;(X) and A;(X) have a
subgraph isomorphic to Kj5. Consequently, by Kuratowski’s Theorem, the
graphs ¥;(X) and ¥;(X) are not planar. Conversely, we know that Kj
has five vertices. Hence if any graph ¥;(X) or A;(X) is not planar, the
graphs ¥;(X) and X;(X), (X), have at least five vertices, which is contrary
to | X| < 4. O

Proposition 4.7. Let X be a chain and let I be an ideal of X. Then the
graphs £1(X) and Ar(X) are outer planar graphs if and only if | X| < 3.

Proof. According to Proposition 4.3, the graphs ¥;(X) and A;(X) are com-
plete graphs. Now, if |X| > 4, then both graphs ¥;(X) and A;(X) have a
subgraph that is isomorphic to K. By Definition 2.17, the graphs ¥;(X) and
Aj(X) are not outer planar. Since K, has four vertices, if any of the graphs
¥(X) or A;(X) is not outer planar, then the graphs ¥;(X) and A;(X),
have at least four vertices, respectively, which is contrary to the fact that
|X| < 3. O

Proposition 4.8. Let X be a chain and let I be an ideal of X. Then the
graphs X1(X) and A;(X) are toroidal graphs if and only if | X| < 7.

Proof. By using Proposition 4.3, the graphs ¥;(X) and A;(X) are complete
graphs. If |X| > 8, then both graphs ¥;(X) and A;(X) have a subgraph
that is isomorphic to Kg. Now, by Theorem 2.19, both graphs ¥;(X) and
Aj(X) are not toroidal. Conversely, since Ky has eight vertices, both graphs
¥(X) and A;(X) are not toroidal and so both graphs ¥;(X) and A;(X)
have at least eight vertices, which is contrary to the fact that | X| <7. O

5 Graphs on the Ideals of KU-algebras Based
on the Binary Operations A

For this section, we assume that the set X represents a bounded commutative
KU-algebra.

Definition 5.1. Let I be an ideal of X. Then we construct a simple graph
Y(X) with vertex set X and two distinct vertices x and y are adjacent if
and only if xt Ny € I.
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Lemma 5.2. Let I be an ideal of X. Then deg(x) = |X|—1 for allx € I in
the graph Yr(X).

Proof. Let x € I and let y be an arbitrary element of X. Then (z.y).y € I.
Since (x.y).y < x, as I is an ideal of X, y.x € E(Y(X)). O

Theorem 5.3. Let I be an ideal of X. Then the graph Y;(X) is reqular if
and only if it is complete.

Proof. Let Y;(X) be a regular graph. By Lemma 5.2, we have deg(1) =
| X'| — 1. Since Y;(X) is regular, for any z € X, deg(x) = |X| — 1. This means
that YT;(X) is a complete graph. Conversely, a complete graph is always
regular. O

The following Proposition 5.4 and Theorem 5.5 follow from Lemma 5.2.
Proposition 5.4. Let I be an ideal of X. Then w(Y;(X)) > |I|.

Theorem 5.5. Let I be an ideal of X. Then Y (X) is connected and
diam(Y (X)) < 2.

Theorem 5.6. Let I be an ideal of X. Then gr(Y;(X)) = 3.

Proof. Let a # 1 be an element in I and let x be an arbitrary element in X.
Then it is easy to see that 1 —a —x — 1 is a cycle of length 3 in T,(X). O

Proposition 5.7. Let I be an ideal of X. Then the following statements
hold:

1. If Y1(X) is planar, then |I| < 4.
2. If Y1(X) is outer planar, then |I| < 3.

3. If T1(X) is toroidal, then |I| <T7.

Proof. 1. From Lemma 5.2, it follows that the graph Y;(X) is a complete
graph on [. If |I| > 5, then Y (X) has a subgraph isomorphic to K,
By Kuratowski’s theorem, the graph Y;(X) is not planar.

2. By Lemma 5.2, the graph T;(X) is a complete graph on I. If |I| > 4,
then Y;(X) has a subgraph isomorphic to K4. By Definition 2.17, the
graph T;(X) is not outer planar.
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3. Again by Lemma 5.2, the graph Y;(X) is a complete graph on I. If
|I| > 7, then T;(X) has a subgraph isomorphic to Kg. By Theorem
2.19, the graph Y;(X) is not toroidal.

0

Theorem 5.8. For any ideal I of X if Y;(X) is an Euler graph, then |X|
is odd.

Proof. According to Lemma 5.2, for all € I, the deg(z) = | X|—1. If T/(X)
is an Euler graph, then the degree of every vertex in I is even. Consequently,
| X| is odd. O

S

Theorem 5.9. For anyideal I of X, if I = Mi<;<p,P; and for each1 < j <n,
the ideal I # Mi<i<n,iz; i, where P; are prime ideals of X, then w(Y7(X))
n = x(Y1(X)).

Proof. For each j with 1 < j < n, consider an element z; in (M1<j<n,iz; ) —
P;. We have A = {x1,...,x,} is a clique in Y;(X). Hence w(Y,;(X)) > n.
Now, we prove that x(T;(X)) < n. Define a coloring f by putting f(x) =
min{i;x ¢ P;}. Let f(z) = k,x and y be adjacent vertices. So x ¢ Py
and z Ay € I. Since Py is prime, y € Py, and so f(y) # k. Now, since
w(T1(X)) < x(T7(X)), the result holds. O

Theorem 5.10. For any ideal I of X, if I = Njc;P;, where P; are prime
ideals of X and J is an infinite set for each i € J, also I # N;xP;, then
w(T (X)) = oo = x(T1(X)).

Proof. Foreach i € J, there exists x; € (N Pj—P;). It can be easily seen that
the set of z; forms an infinite clique in Y;(X). Since w(Y (X)) < x(Y (X)),
the assertion holds. O

6 Conclusion

In this article we have studied and discussed ideal-annihilator, right-ideal-
annihilator, left-ideal-annihilator for a KU-algebra. Moreover, construction
of some main types of graphs in a bounded KU-algebra (X,.,0) based on
ideals that are denoted by ¢1(X), A;(X) and ¥X;(X) were taken under con-
sideration. Furthermore, basic graphical properties such as connectivity, reg-
ularity, and planarity on the structure of these graphs were investigated. Fi-
nally, we have constructed the graph Y;(X) and have studied its properties
with these aspects.
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