On the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ where a is congruent to 19 modulo 28

Chokchai Viriyapong, Nongluk Viriyapong
Mathematics and Applied Mathematics Research Unit
Department of Mathematics
Mahasarakham University
Maha Sarakham, 44150, Thailand
email:chokchai.v@msu.ac.th, nongluk.h@msu.ac.th

(Received September 26, 2023, Accepted November 1, 2023,
Published November 10, 2023)

Abstract

In this article, we show that the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution where $a \in \mathbb{Z}^{+}$ such that $a \equiv_{28} 19$.

1 Introduction

Many mathematicians studied the non-negative solutions (x, y, z) of Diophantine equations of the type $a^{x}+b^{y}=z^{2}$ where a and b are fixed. In 2020, Dokchann and Pakapongpun [1] proved that the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution where a is a positive integer with $a \equiv_{42} 5$. Later, C. Viriyapong and N. Viriyapong [2] showed that the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution where a is a positive integer with $a \equiv_{21} 5$.

In this paper, we study the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ where a is a positive integer with $a \equiv_{28} 19$.

Key words and phrases: Diophantine equation, congruence.
AMS (MOS) Subject Classifications: 11D61
The corresponding author is Nongluk Viriyapong.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2 Preliminaries

Throughout this article, $a \equiv_{m} b$ always means a and b are congruent modulo m where a, b, m are integers such that $m \geqslant 1$. For notational convenience, we will write $a \equiv_{m} b, c$ to mean that $a \equiv_{m} b$ or $a \equiv_{m} c$.

Now, we shall recall the Catalan's conjecture [3] of 1844, which was proved by Mihailescu [4] in 2004.

Theorem 2.1 (Catalan's conjecture). The Diophantine equation $a^{x}-b^{y}=$ 1 has a unique solution $(a, b, x, y)=(3,2,2,3)$ where a, b, x and y are integers with $\min \{a, b, x, y\}>1$.

Next, we shall recall a lemma, which will be useful our work, in [2].
Lemma 2.2. If x is a positive odd integer, then $5^{x} \equiv_{7} 3,5,6$.

3 Main Results

Now, we shall discuss two important lemmas used in the main theorem.
Lemma 3.1. Let a be a positive integer such that $a \equiv_{28}$ 19. The Diophantine equation $a^{x}+1=z^{2}$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers x and z such that $a^{x}+$ $1=z^{2}$. If $x=0$, then $z^{2}=2$ which is a contradiction. Now, we have $x \geqslant 1$. Since $a \geqslant 19$, by Theorem 2.1, $x=1$. Since $a \equiv_{28} 19, a \equiv_{7} 5$. Then $z^{2} \equiv_{7} 6$ which contradicts the fact that $z^{2} \equiv_{7} 0,1,2,4$. The proof is complete.

Lemma 3.2. Let a be a positive integer such that $a \equiv_{28}$ 19. The Diophantine equation $1+(a+2)^{y}=z^{2}$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers y and z such that $1+$ $(a+2)^{y}=z^{2}$. If $y=0, z^{2}=2$ which is impossible. Now, we have $y \geqslant 1$. Since $a \equiv_{28} 19, a+2 \equiv_{4} 1$. Then $z^{2} \equiv_{4} 2$. This contradicts the fact that $z^{2} \equiv{ }_{4} 0,1$. This lemma is proved.

Next, we shall give our main result.
Theorem 3.3. Let a be a positve integer such that $a \equiv_{28}$ 19. The Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution where x, y, z are non-negative integers.

Proof. Assume that there exist non-negative integers x, y, z such that $a^{x}+(a+2)^{y}=z^{2}$. By Lemma 3.1 and 3.2, $x \geqslant 1$ and $y \geqslant 1$. If x is even, then $a^{x} \equiv_{4} 1$ because $a \equiv_{28} 19$. Since $(a+2)^{y} \equiv_{4} 1, z^{2} \equiv_{4} 2$ which contradicts the fact that $z^{2} \equiv_{4} 0,1$. Now, we obtain that x is odd. Since $a \equiv_{7} 5$, by Lemma 2.2, we have $a^{x} \equiv_{7} 3,5,6$. Since $(a+2)^{y} \equiv_{7} 0$, we obtain $z^{2} \equiv_{7} 3,5,6$, which contradicts the fact that $z^{2} \equiv_{7} 0,1,2,4$. This completes the proof.

4 Conclusion

In this paper, we proved that the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$ has no non-negative integer solution where a is a positive integer such that $a \equiv_{28} 19$. Clearly, the Diophantine equations $47^{x}+49^{y}=z^{2}$ [5] and $131^{x}+133^{y}=z^{2}[6]$ are two special cases of Theorem 3.3.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

[1] R. Dokchann, A. Pakapongpun, On the Diophantine Equation $a^{x}+(a+$ $2)^{y}=z^{2}$ where $\left.a \equiv 5(\bmod 42)\right)$. Tatra Mt. Math. Publ., 77, no. 1, (2020), 39-42.
[2] C. Viriyapong, N. Viriyapong, On the Diophantine Equation $a^{x}+(a+$ $2)^{y}=z^{2}$ where $a \equiv_{21} 5$. Int. J. Math. Comput. Sci., 18, no. 2, (2023), 525-527.
[3] E. Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27, (1844), 192.
[4] S. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167-195.
[5] B. Sroysang, On the Diophantine Equation $47^{x}+49^{y}=z^{2}$, Int. J. Pure Appl. Math., 89, no. 2, (2013), 279-282.
[6] B. Sroysang, On the Diophantine Equation $131^{x}+133^{y}=z^{2}$, Int. J. Pure Appl. Math., 90, no. 1, (2014), 65-68.

