International Journal of Mathematics and Computer Science, **19**(2024), no. 2, 449–451

On the Diophantine equation $a^x + (a+2)^y = z^2$

M CS

where \hat{a} is congruent to 19 modulo 28

Chokchai Viriyapong, Nongluk Viriyapong

Mathematics and Applied Mathematics Research Unit Department of Mathematics Mahasarakham University Maha Sarakham, 44150, Thailand

email: chokchai.v@msu.ac.th, nongluk.h@msu.ac.th

(Received September 26, 2023, Accepted November 1, 2023, Published November 10, 2023)

Abstract

In this article, we show that the Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution where $a \in \mathbb{Z}^+$ such that $a \equiv_{28} 19$.

1 Introduction

Many mathematicians studied the non-negative solutions (x, y, z) of Diophantine equations of the type $a^x + b^y = z^2$ where a and b are fixed. In 2020, Dokchann and Pakapongpun [1] proved that the Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution where a is a positive integer with $a \equiv_{42} 5$. Later, C. Viriyapong and N. Viriyapong [2] showed that the Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution where a is a positive integer with $a \equiv_{21} 5$.

In this paper, we study the Diophantine equation $a^x + (a+2)^y = z^2$ where a is a positive integer with $a \equiv_{28} 19$.

Key words and phrases: Diophantine equation, congruence. AMS (MOS) Subject Classifications: 11D61 The corresponding author is Nongluk Viriyapong. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2 Preliminaries

Throughout this article, $a \equiv_m b$ always means a and b are congruent modulo m where a, b, m are integers such that $m \ge 1$. For notational convenience, we will write $a \equiv_m b, c$ to mean that $a \equiv_m b$ or $a \equiv_m c$.

Now, we shall recall the Catalan's conjecture [3] of 1844, which was proved by Mihailescu [4] in 2004.

Theorem 2.1 (Catalan's conjecture). The Diophantine equation $a^x - b^y = 1$ has a unique solution (a, b, x, y) = (3, 2, 2, 3) where a, b, x and y are integers with $\min\{a, b, x, y\} > 1$.

Next, we shall recall a lemma, which will be useful our work, in [2].

Lemma 2.2. If x is a positive odd integer, then $5^x \equiv_7 3, 5, 6$.

3 Main Results

Now, we shall discuss two important lemmas used in the main theorem.

Lemma 3.1. Let a be a positive integer such that $a \equiv_{28} 19$. The Diophantine equation $a^x + 1 = z^2$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers x and z such that $a^x + 1 = z^2$. If x = 0, then $z^2 = 2$ which is a contradiction. Now, we have $x \ge 1$. Since $a \ge 19$, by Theorem 2.1, x = 1. Since $a \equiv_{28} 19$, $a \equiv_7 5$. Then $z^2 \equiv_7 6$ which contradicts the fact that $z^2 \equiv_7 0, 1, 2, 4$. The proof is complete.

Lemma 3.2. Let a be a positive integer such that $a \equiv_{28} 19$. The Diophantine equation $1 + (a+2)^y = z^2$ has no non-negative integer solution.

Proof. Assume that there exist non-negative integers y and z such that $1 + (a+2)^y = z^2$. If y = 0, $z^2 = 2$ which is impossible. Now, we have $y \ge 1$. Since $a \equiv_{28} 19$, $a + 2 \equiv_4 1$. Then $z^2 \equiv_4 2$. This contradicts the fact that $z^2 \equiv_4 0, 1$. This lemma is proved.

Next, we shall give our main result.

Theorem 3.3. Let a be a positive integer such that $a \equiv_{28} 19$. The Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution where x, y, z are non-negative integers.

450

On the Diophantine equation $a^x + (a+2)^y = z^2 \dots$ 451

Proof. Assume that there exist non-negative integers x, y, z such that $a^x + (a+2)^y = z^2$. By Lemma 3.1 and 3.2, $x \ge 1$ and $y \ge 1$. If x is even, then $a^x \equiv_4 1$ because $a \equiv_{28} 19$. Since $(a+2)^y \equiv_4 1, z^2 \equiv_4 2$ which contradicts the fact that $z^2 \equiv_4 0, 1$. Now, we obtain that x is odd. Since $a \equiv_7 5$, by Lemma 2.2, we have $a^x \equiv_7 3, 5, 6$. Since $(a+2)^y \equiv_7 0$, we obtain $z^2 \equiv_7 3, 5, 6$, which contradicts the fact that $z^2 \equiv_7 0, 1, 2, 4$. This completes the proof.

4 Conclusion

In this paper, we proved that the Diophantine equation $a^x + (a+2)^y = z^2$ has no non-negative integer solution where a is a positive integer such that $a \equiv_{28} 19$. Clearly, the Diophantine equations $47^x + 49^y = z^2$ [5] and $131^x + 133^y = z^2$ [6] are two special cases of Theorem 3.3.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] R. Dokchann, A. Pakapongpun, On the Diophantine Equation $a^x + (a + 2)^y = z^2$ where $a \equiv 5 \pmod{42}$. Tatra Mt. Math. Publ., **77**, no. 1, (2020), 39–42.
- [2] C. Viriyapong, N. Viriyapong, On the Diophantine Equation $a^x + (a + 2)^y = z^2$ where $a \equiv_{21} 5$. Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 525–527.
- [3] E. Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27, (1844), 192.
- [4] S. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167–195.
- [5] B. Sroysang, On the Diophantine Equation $47^x + 49^y = z^2$, Int. J. Pure Appl. Math., **89**, no. 2, (2013), 279–282.
- [6] B. Sroysang, On the Diophantine Equation $131^x + 133^y = z^2$, Int. J. Pure Appl. Math., **90**, no. 1, (2014), 65–68.