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Abstract

In this article, we show that the Diophantine equation
a
x + (a+2)y = z

2 has no non-negative integer solution where a ∈ Z
+

such that a ≡28 19.

1 Introduction

Many mathematicians studied the non-negative solutions (x, y, z) of Dio-
phantine equations of the type ax + by = z2 where a and b are fixed. In
2020, Dokchann and Pakapongpun [1] proved that the Diophantine equation
ax + (a+ 2)y = z2 has no non-negative integer solution where a is a positive
integer with a ≡42 5. Later, C. Viriyapong and N. Viriyapong [2] showed
that the Diophantine equation ax+(a+2)y = z2 has no non-negative integer
solution where a is a positive integer with a ≡21 5.

In this paper, we study the Diophantine equation ax+(a+2)y = z2 where
a is a positive integer with a ≡28 19.
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2 Preliminaries

Throughout this article, a ≡m b always means a and b are congruent modulo
m where a, b, m are integers such that m > 1. For notational convenience,
we will write a ≡m b, c to mean that a ≡m b or a ≡m c.

Now, we shall recall the Catalan’s conjecture [3] of 1844, which was proved
by Mihailescu [4] in 2004.

Theorem 2.1 (Catalan’s conjecture). The Diophantine equation ax−by =
1 has a unique solution (a, b, x, y) = (3, 2, 2, 3) where a, b, x and y are inte-

gers with min{a, b, x, y} > 1.

Next, we shall recall a lemma, which will be useful our work, in [2].

Lemma 2.2. If x is a positive odd integer, then 5x ≡7 3, 5, 6.

3 Main Results

Now, we shall discuss two important lemmas used in the main theorem.

Lemma 3.1. Let a be a positive integer such that a ≡28 19. The Diophantine
equation ax + 1 = z2 has no non-negative integer solution.

Proof. Assume that there exist non-negative integers x and z such that ax+
1 = z2. If x = 0, then z2 = 2 which is a contradiction. Now, we have x > 1.
Since a > 19, by Theorem 2.1, x = 1. Since a ≡28 19, a ≡7 5. Then z2 ≡7 6
which contradicts the fact that z2 ≡7 0, 1, 2, 4. The proof is complete.

Lemma 3.2. Let a be a positive integer such that a ≡28 19. The Diophantine
equation 1 + (a+ 2)y = z2 has no non-negative integer solution.

Proof. Assume that there exist non-negative integers y and z such that 1 +
(a + 2)y = z2. If y = 0, z2 = 2 which is impossible. Now, we have y > 1.
Since a ≡28 19, a + 2 ≡4 1. Then z2 ≡4 2. This contradicts the fact that
z2 ≡4 0, 1. This lemma is proved.

Next, we shall give our main result.

Theorem 3.3. Let a be a positve integer such that a ≡28 19. The Diophan-

tine equation ax + (a + 2)y = z2 has no non-negative integer solution where

x, y, z are non-negative integers.
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Proof. Assume that there exist non-negative integers x, y, z such that
ax+(a+2)y = z2. By Lemma 3.1 and 3.2, x > 1 and y > 1. If x is even, then
ax ≡4 1 because a ≡28 19. Since (a+2)y ≡4 1, z

2 ≡4 2 which contradicts the
fact that z2 ≡4 0, 1. Now, we obtain that x is odd. Since a ≡7 5, by Lemma
2.2, we have ax ≡7 3, 5, 6. Since (a+ 2)y ≡7 0, we obtain z2 ≡7 3, 5, 6, which
contradicts the fact that z2 ≡7 0, 1, 2, 4. This completes the proof.

4 Conclusion

In this paper, we proved that the Diophantine equation
ax + (a+ 2)y = z2 has no non-negative integer solution where a is a positive
integer such that a ≡28 19. Clearly, the Diophantine equations 47x+49y = z2

[5] and 131x + 133y = z2 [6] are two special cases of Theorem 3.3.
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