Geodetic Closure Polynomial of Graphs

Rosalio G. Artes Jr. ${ }^{1}$, Jeffrey Imer C. Salim ${ }^{1}$, Regimar A. Rasid ${ }^{1}$, Jerrivieh I. Edubos ${ }^{2}$, Bayah J. Amiruddin ${ }^{1}$
${ }^{1}$ Mindanao State University
Tawi-Tawi College of Technology and Oceanography Sanga-Sanga, 7500 Bongao, Tawi-Tawi, Philippines
${ }^{2}$ Philippine Christian University
1648 Taft Ave, Malate, 1004 Metro Manila, Philippines
email: rosalioartes@msutawi-tawi.edu.ph, jeffreyimersalim@msutawi-tawi.edu.ph, regimarrasid@msutawi-tawi.edu.ph, jerrivieh.edubos.gsbm@pcu.edu.ph, bayahamiruddin@msutawi-tawi.edu.ph

(Received September 26, 2023, Accepted October 30, 2023, Published November 10, 2023)

Abstract

In this paper, we introduced a new graph polynomial called the vertex geodetic closure polynomial of a graph and established results for paths, complete bipartite graphs, and graphs resulting from the join of two graphs.

1 Introduction

The study of graph polynomials surfaced in the field of discrete and applied mathematics contributing some applications in Chemistry, Biology, and Physics [2]. In 1994, Hoede and Li [4] introduced the independent set polynomial of graphs which counts the number of independent substructure of the vertex-set of a graph. In 2014, Laja and Artes [5] introduced the notion

Key words and phrases: Graph polynomial, vertex geodetic set, vertex geodetic polynomial.
AMS (MOS) Subject Classifications: 05C25, 05C30, 05C31.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
of convex subgraph polynomials where convex sets are the baseline substructure. Convexity in graphs uses the concept of geodetic closures. Vijayan and Dafini [6] defined the notion of geodetic polynomial and obtained the geodetic sets and polynomials of centipedes. Recently, Asdain, Salim, and Artes [1] introduced the geodetic bounds in graphs. Their paper established the maximum 2-closure vertex geodetic sets in a graph.

Being inspired by the previous works, we develop a new graph polynomial by considering 2-closure vertex geodetic sets. For graph theoretic concepts used in this study, the readers may refer to Harary [3].

For two vertices u and v in a graph G, the geodetic closure of $\{u, v\}$ is the set $I_{G}[u, v]=\{u, v\} \cup\{y: y$ lies in a $u-v$ shortest path in $G\}$. A subset S of $V(G)$ is a 2-closure vertex geodetic set in G if there exists $(u, v) \in S \times S$ such that $I_{G}[u, v]=S$. The vertex geodetic closure polynomial of G is given by $g_{v}(G ; x)=\sum_{i=1}^{\gamma_{2}(G)} g_{i}(G) x^{i}$, where $g_{i}(G)$ is the number of 2-closure vertex geodetic sets in G of cardinality i and $\gamma_{2}(G)$ is the cardinality of a maximal 2-closure vertex geodetic set in G. Note that for every $u \in V(G), I_{G}[u, u]=$ $\{u\}$. Hence, every singleton subset of $V(G)$ is a 2 -closure vertex geodetic set in G. Also, if $u v \in E(G)$, then $I_{G}[u, v]=\{u, v\}$. Thus, every pair of adjacent vertices in G is a 2 -closure vertex geodetic set in G. Consequently, $g_{1}(G)=|V(G)|$ and $g_{2}(G)=|E(G)|$.

2 Results

The following result characterizes the 2-closure vertex geodetic sets in P_{n}. Note that a subgraph of P_{n} is connected if and only if it is also a path. The following result immediately follows.

Lemma 2.1. A subset S of $V\left(P_{n}\right)$ is a 2-closure vertex geodetic set in P_{n} if and only if $\langle S\rangle=P_{r}$ for some $r \in\{1,2,3, \ldots, n\}$.

The next result establishes the vertex geodetic closure polynomial of paths.

Theorem 2.2. For natural numbers $n \geq 1, g_{v}\left(P_{n} ; x\right)=n x \mu(x)-x^{2} \mu^{\prime}(x)$, where $\mu(x)=1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}$.

Proof: Lemma 2.1 asserts that

$$
\begin{aligned}
g_{v}\left(P_{n} ; x\right)= & n x+(n-1) x^{2}+(n-2) x^{3}+\cdots+2 x^{n-1}+x^{n} \\
= & n x\left[1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}\right] \\
& -x^{2}\left[1+2 x+3 x^{2}+\cdots+(n-2) x^{n-3}+(n-1) x^{n-2}\right] \\
= & n x \mu(x)-x^{2} \mu^{\prime}(x),
\end{aligned}
$$

where $\mu(x)=1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}$. This completes the proof.
Next, we characterize the 2-closure vertex geodetic sets of the complete bipartite graph $K_{m, n}$.

Lemma 2.3. A nontrivial subset S of $V\left(K_{m, n}\right)$ is a 2-closure vertex geodetic set in $K_{m, n}$ if and only if it satisfies one of the following conditions:
(i) $S=\{u, v\}$, where $u \in V\left(\overline{K_{m}}\right)$ and $v \in V\left(\overline{K_{n}}\right)$
(ii) $S=V\left(\overline{K_{n}}\right) \cup\{w, z\}, w, z \in V\left(\overline{K_{m}}\right)$
(iii) $S=V\left(\overline{K_{m}}\right) \cup\{c, d\}, c, d \in V\left(\overline{K_{n}}\right)$

Proof: Let S be a 2-closure vertex geodetic set in $K_{m, n}$. Then $S=I_{K_{m, n}}[a, b]$ for some $\{a, b\} \subseteq V\left(K_{m, n}\right)=V\left(\overline{K_{m}}\right) \cup V\left(\overline{K_{n}}\right)$. If $a \in V\left(\overline{K_{m}}\right)$ and $b \in V\left(\overline{K_{n}}\right)$, then $S=\{a, b\}$ and (i) is satisfied. If $\{a, b\} \subseteq V\left(\overline{K_{m}}\right)$, then $S=I_{K_{m, n}}[a, b]=$ $\{a, b\} \cup V\left(\overline{K_{n}}\right)$ and $(i i)$ is satisfied. Similarly, if $\{a, b\} \subseteq V\left(\overline{K_{n}}\right)$, then $S=$ $I_{K_{m, n}}[a, b]=\{a, b\} \cup V\left(\overline{K_{m}}\right)$ and (iii) follows. The converse is clear taking the geodetic closures of $\{u, v\},\{w, z\}$, and $\{c, d\}$.

From the above lemma, we have the followng result on the vertex geodetic polynomial of the complate bipartite graph $K_{m, n}$.

Theorem 2.4. For natural numbers $m, n \geq 2, g\left(K_{m, n}, x\right)=(m+n) x+$ $m n x^{2}+\binom{n}{2} x^{m+2}+\binom{m}{2} x^{n+2}$.

Proof: The first and second terms follow from the order and size of $K_{m, n}$, respectively. Now, for every pair of vertices $\{w, z\} \subseteq V\left(\overline{K_{m}}\right), I_{K_{m, n}}[w, z]=$ $\{w, z\} \cup V\left(\overline{K_{n}}\right)$. Similarly, for $\{c, d\} \subseteq V\left(\overline{K_{n}}\right), I_{K_{m, n}}[c, d]=\{c, d\} \cup V\left(\overline{K_{m}}\right)$. Consequently, $g_{m+2}\left(K_{m, n}\right)=\binom{n}{2}$ and $g_{n+2}\left(K_{m, n}\right)=\binom{m}{2}$. The polynomial follows.

The following lemma characterizes the 2-closure vertex geodetic sets in the join $G \oplus H$.

Lemma 2.5. Let G and H be nontrivial connected graphs. A subset S of $V(G \oplus H)$ with $|S| \geq 3$ is a 2-closure vertex geodetic set in $G \oplus H$ if and only if it satisfies one of the following:
(i) $S=S_{G} \cup V(H)$, where S_{G} is a 2-closure vertex geodetic set in G of diameter 2.
(ii) $S=S_{H} \cup V(G)$, where S_{H} is a 2-closure vertex geodetic set in H of diameter 2.
(iii) $V(H) \cup\{u, v\}$, where $d_{G}(u, v)>2$.
(iv) $V(G) \cup\{w, z\}$, where $d_{H}(u, v)>2$.

Proof: Assume that S is a 2-closure vertex geodetic set in G. Then there exist $a, b \in V(G \oplus H)$ such that $I_{G \oplus H}[a, b]=S$. Note that if $a \in V(G)$ and $b \in V(H)$, then $I_{G \oplus H}[a, b]=\{a, b\}$. Hence, we consider only when either $\{a, b\} \subseteq V(G)$ or $\{a, b\} \subseteq V(H)$ to have $|S| \geq 3$.

Case 1: $\{a, b\} \subseteq V(G)$.
Subcase 1.1: $\operatorname{dist}_{G}(a, b)=2$.
If $\operatorname{dist}_{G}(a, b)=2$, then the diameter of $I_{G}[a, b]$ is 2 . Moreover, $I_{G \oplus H}[a, b]=$ $I_{G} \cup V(H)$. This gives condition (i).

Subcase 1.2: $\operatorname{dist}_{G}(a, b)>2$
In this case, $I_{G \oplus H}[a, b]=\{a, b\} \cup V(H)$. This gives condition (iii).
Case 2: $\{a, b\} \subseteq V(H)$.
Subcase 2.1: $\operatorname{dist}_{H}(a, b)=2$. This is similar to Subcase 1.1 which implies condition (ii).

Subcase 2.2: $\operatorname{dist}_{H}(a, b)>2$
In this case, $I_{G \oplus H}[a, b]=\{a, b\} \cup V(G)$. This gives condition (iv).
The converse is clear by taking the closures of $\{a, b\},\{u, v\}$, and $\{w, z\}$. The proof is complete.

Denote by $S_{p}\left(G\right.$, diam $\left._{2}\right)$ a 2-closure vertex geodetic set of G of diamater 2 with cardinality p. Denote by $\alpha\left(G, d i s t_{>2}\right)$ the number of pairs of vertices in G with distance greater than 2.

The vertex geodetic polynomial of the graph resulting from the join of two nontrivial connected graphs G and H is established in the following result.

Theorem 2.6. Let G and H be nontrivial connected graphs. Then

$$
\begin{aligned}
g_{v}(G \oplus H ; x)= & (|V(G)|+|V(H)|) x+(|E(G)|+|E(H)|) x^{2} \\
& +|V(G)||V(H)|) x^{2}+\sum_{p} x^{\mid S_{p}\left(G, \text { diam }_{2}\right)|+|V(H)|} \\
& +\sum_{q} x^{\mid S_{q}\left(H, \text { diam }_{2}\right)|+|V(G)|}+\alpha\left(G, \text { dist }_{>2}\right) x^{2+|V(H)|} \\
& +\alpha\left(H, \text { dist }_{>2}\right) x^{2+|V(G)|} .
\end{aligned}
$$

Proof: The first three terms follow from the order and size of $G \oplus H$. The 4th, 5th, 6th and 7th terms follow from Lemma 2.5 (i), (iii), (ii), and (iv), respectively.

References

[1] A. M. Asdain, J. I. C. Salim, R. G. Artes Jr., Geodetic Bounds in Graphs, International Journal of Mathematics and Computer Science, 18, no. 4, (2023), 767-771.
[2] J. Ellis-Monaghan, J. Merino, Graph Polynomials and Their Applications II: Interrelations and Interpretations, Birkhauser, Boston, 2011.
[3] F. Harary, Graph Theory, CRC Press, Boca Raton, 2018.
[4] C. Hoede, X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Mathematics, 125, (1994), 219-228.
[5] L. S. Laja, R. G. Artes Jr., Zeros of Convex Subgraph Polynomials. Applied Mathematical Sciences, 8, no. 59, (2014), 2917-2923. http://dx.doi.org/10.12988/ams.2014.44285
[6] A. Vijayan, T. Binu Selin, On Total Edge Fixed Geodominating Sets and Polynomials of Graphs, International Journal of Mathematics, 3, no. 2, (2012), 1495-1501.

