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Abstract

In this paper, we introduced a new graph polynomial called the
vertex geodetic closure polynomial of a graph and established results
for paths, complete bipartite graphs, and graphs resulting from the
join of two graphs.

1 Introduction

The study of graph polynomials surfaced in the field of discrete and ap-
plied mathematics contributing some applications in Chemistry, Biology, and
Physics [2]. In 1994, Hoede and Li [4] introduced the independent set poly-
nomial of graphs which counts the number of independent substructure of
the vertex-set of a graph. In 2014, Laja and Artes [5] introduced the notion
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of convex subgraph polynomials where convex sets are the baseline substruc-
ture. Convexity in graphs uses the concept of geodetic closures. Vijayan
and Dafini [6] defined the notion of geodetic polynomial and obtained the
geodetic sets and polynomials of centipedes. Recently, Asdain, Salim, and
Artes [1] introduced the geodetic bounds in graphs. Their paper established
the maximum 2-closure vertex geodetic sets in a graph.

Being inspired by the previous works, we develop a new graph polynomial
by considering 2-closure vertex geodetic sets. For graph theoretic concepts
used in this study, the readers may refer to Harary [3].

For two vertices v and v in a graph G, the geodetic closure of {u,v} is
the set Ig[u,v] = {u,v} U{y : y lies in a u-v shortest path in G}. A subset
S of V(G) is a 2-closure vertex geodetic setin G if there exists (u,v) € S x S

such that Ig[u,v] = S. The vertex geodetic closure polynomial of G is given
72(G)

by ¢,(G;x) = Z gi(G)x", where g;(G) is the number of 2-closure vertex
i=1

geodetic sets in G of cardinality i and 72(G) is the cardinality of a maximal

2-closure vertex geodetic set in G. Note that for every u € V(G), Ig[u,u] =

{u}. Hence, every singleton subset of V(G) is a 2-closure vertex geodetic

set in G. Also, if ww € E(G), then Ig[u,v] = {u,v}. Thus, every pair of

adjacent vertices in G is a 2-closure vertex geodetic set in G. Consequently,

91(G) = [V(G)] and g2(G) = |E(G)].

2 Results

The following result characterizes the 2-closure vertex geodetic sets in P,.
Note that a subgraph of P, is connected if and only if it is also a path. The
following result immediately follows.

Lemma 2.1. A subset S of V(P,) is a 2-closure vertex geodetic set in P, if
and only if (S) = P, for some r € {1,2,3,...,n}.

The next result establishes the vertex geodetic closure polynomial of
paths.

Theorem 2.2. For natural numbers n > 1, g,(Pn; ) = nap(r) — 224/ (),
where p(x) =1+z+ 2%+ +a" 242" L
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Proof: Lemma 2.1 asserts that

go(Po;z) = naz+(n—1a"+(n—2)2°+- + 22" +a"
= nz[l+z+ai+ .+ 242"
—2?[1422+32+ -+ (n—2)2" % + (n — 1)2"?
= nap(e) — 2w (@),

where pu(z) =1+ xz + 2%+ -+ 2" 2+ 2"'. This completes the proof. [
Next, we characterize the 2-closure vertex geodetic sets of the complete
bipartite graph K, ,,.

Lemma 2.3. A nontrivial subset S of V (K, ) is a 2-closure vertex geodetic
set in K, if and only if it satisfies one of the following conditions:

(1) S ={u,v}, where u € V(K,,) and v € V(K,)
(1) S =V(K,) U{w,z},w,z€ V(K,)
(iii) S =V (K,)U{c,d}, c,de V(K,)

Proof: Let S be a 2-closure vertex geodetic set in K,, . Then S = Ik,, . [a,b]
for some {a,b} C V(Kyun) = V(K,)UV(K,). Ifa € V(K,,)and b e V(K,),
then S = {a, b} and (i) is satisfied. If {a,b} C V(K,,), then S = Ig,, .[a,b] =
{a,b} UV (K,) and (i) is satisfied. Similarly, if {a,b} C V(K,), then S =
I, . la,b] = {a,b} UV (K,,) and (iii) follows. The converse is clear taking
the geodetic closures of {u, v}, {w, z}, and {¢, d}. O

From the above lemma, we have the followng result on the vertex geodetic
polynomial of the complate bipartite graph K, .

Theorem 2.4. For natural numbers m,n > 2, ¢(Kpn,x) = (m + n)z +

2 n m—+2 m n+2
mne +(2):)§ +<2):)§ .

Proof: The first and second terms follow from the order and size of K, ,,
respectively. Now, for every pair of vertices {w, z} C V(K,,), Ik, .[w, 2] =

{w,z} UV (K,). Similarly, for {c,d} C V(K,), Ik,,.[c,d] = {c,d} UV (K,,).
Consequently, gm+2(Kmn) = (;L) and gn4o(Kpmn) = (7;) The polynomial

follows.
The following lemma characterizes the 2-closure vertex geodetic sets in
the join G @ H.
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Lemma 2.5. Let G and H be nontrivial connected graphs. A subset S of
V(G @ H) with |S| > 3 is a 2-closure vertex geodetic set in G & H if and
only if it satisfies one of the following:

(1) S = SqgUV(H), where Sg is a 2-closure vertex geodetic set in G of
diameter 2.

(171) S = Sy UV(G), where Sy is a 2-closure vertex geodetic set in H of
diameter 2.

(1i1) V(H)U{u,v}, where dg(u,v) > 2.
() V(G)UA{w,z}, where dy(u,v) > 2.

Proof: Assume that S is a 2-closure vertex geodetic set in G. Then there
exist a,b € V(G @& H) such that Igepmla,b] = S. Note that if a € V(G) and
b e V(H), then Iggula,b] = {a,b}. Hence, we consider only when either
{a,b} CV(G) or {a,b} C V(H) to have |S| > 3.

Case 1: {a,b} CV(G).

Subcase 1.1: distg(a,b) = 2.
If distg(a,b) = 2, then the diameter of I5[a, b] is 2. Moreover, Iggg[a, b] =
I UV(H). This gives condition (7).

Subcase 1.2: distg(a,b) > 2
In this case, Iggula,b] = {a,b} UV (H). This gives condition (7).

Case 2: {a,b} CV(H).

Subcase 2.1: disty(a,b) = 2. This is similar to Subcase 1.1 which implies
condition (7).

Subcase 2.2: distg(a,b) > 2
In this case, Iggn|a, bl = {a,b} UV (G). This gives condition (iv).

The converse is clear by taking the closures of {a, b}, {u,v}, and {w, z}.
The proof is complete. U

Denote by S,(G, diamsy) a 2-closure vertex geodetic set of G of diamater
2 with cardinality p. Denote by a(G, dist~s) the number of pairs of vertices
in G with distance greater than 2.

The vertex geodetic polynomial of the graph resulting from the join of two
nontrivial connected graphs G and H is established in the following result.
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Theorem 2.6. Let G and H be nontrivial connected graphs. Then

g(Go Hiz) = (V(G)|+[V(H))z+ (EG)| +|E(H)|)z"
HV(G)|V(H)|)a? 4 gl diema) VD)
p
+ 37 glSuHdiam VO 4 (@, distsq)a?HV )
q

+a(H, distsy) x> VA

Proof: The first three terms follow from the order and size of G & H. The

Ath,

5th, 6th and 7th terms follow from Lemma 2.5 (i), (ii7), (i7), and (iv),

respectively. O
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