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Abstract

In this paper, we employ an algorithm that is based on multiple
fractional power series (MFPS) to tackle the time fractional reaction-
diffusion-convection (TF-RDC) model in Caputo sense. We construct
a rapidly convergent series by minimizing the residual function and
derive the coefficients of the MFPS through a chain of successive equa-
tions with lower cost and minimum efforts.
The effect of Caputo operator to TF-RDC is evident from the obtained
solution curves for different fractional orders. Values of residual func-
tions are tabulated to prove the accuracy of our algorithm.

1 Introduction

In the last few decades, many real problems were translated into mathemat-
ical models via fractional differential equations (FDEs) due to its ability to
keep not only the original behavior of physical systems, but also their his-
torical states [1]. One of these models is the reaction-diffusion-convection
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(RDC) model which is a nonlinear partial differential equation (PDE) that
studies the effect of three factors; reaction, convention and diffusion; to the
concentration of the substance distributed. It is applicable in many fields of
science, such as in heat conduction [2] and in cardiac arrhythmias [3]. It can
be formulated as

∗

tD
β
0Q(x, t) = (Ψ(Q)Qx)x + Φ(Q)Qx +Υ(Q), Q(x, 0) = B(x) (1.1)

such that t ≥ 0, x ∈ R, β ∈ (0, 1], Q = Q(x, t) is an unknown function to
be determined, the functions Ψ,Φ and Υ denote the diffusion, the convention,
and the reaction terms, respectively. While ∗

tD
β
0 is the Caputo time fractional

derivative which is defined as follows.

Definition 1.1. [1] Let β ∈ (0, 1]. The Caputo fractional derivative of order
β for Q(t) is defined by

∗

tD
β
aQ(t) =







1

Γ(1− β)

∫ t

a
(t− η)−βQ′(η)dη, β ∈ (0, 1)

Q′(t), β = 1

provided the right hand side exists point wise on [a, b].

Unfortunately, dealing with FDE’s and getting their exact or even ana-
lytic solutions is not an easy task. Consequently, several powerful techniques
have been modified to approximate their solutions. Examples of such tech-
niques can be found in [4-5] and the references therein. One useful technique
is the fractional residual power series method (FRPSM) which was suggested
in [6] and was rapidly applied to many FDE’s [7-8]. In order to apply the
FRPSM for solving TF-RDCE, we assume the solution has MFPS which is
defined as follows.

Definition 1.2. [9] Let β ∈ (0, 1] and t ∈ [a,∞). The MFPS about a has
the form

∞
∑

m=0

γm(x)(t− a)βm = γ0(x) + γ1(x)(t− a)β + γ2(x)(t− a)2β + · · · . (1.2)

2 The FRPS Algorithm to Solve TF-RDCM

To apply the FRPSM to solve the TF-RDCM, we have the following algo-
rithm.
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Step (1) Assume the solution of (1.1) has the MFPS form

Q(x, t) =
∞
∑

m=0

γm(x)t
mβ

Γ(βm+ 1)

and define the residual function by

ResidQ(x, t) =
∗

t D
β
0Q(x, t)− (Ψ(Q)Qx)x − Φ(Q)Qx −Υ(Q).

Step (2) Find the 0-th coefficient using the initial condition Q(x, 0) = B(x).
Step (3) Define the approximate solution as the N-th truncated MFPS of Q:

QN(x, t) = B(x) +

N
∑

m=1

γm(x)t
mβ

Γ(βm+ 1)
.

Step (4) Define the N -th residual function as

ResidQ,N(x, t) =
∗

t D
β
0QN(x, t)− (Ψ(QN )(QN)x)x − Φ(QN )(Q)Nx

−Υ(QN).

Step (5) Manipulate the equations ∗

tD
(k−1)β
0 ResidQ,N(x, 0) = 0, k = 1, 2, 3, . . . , N.

Step (6) Find the coefficient γN(x) by solving

∗

tD
(N−1)β
0 ResidQ,N(x, 0) = 0.

Step(7) Achieve the required accuracy by repeating Steps (3-6).

3 Numerical Applications

Example 3.1 Consider the TF-RDC equation:

∗

tD
β
0Q(x, t) = Qxx(x, t)+Q(x, t)(Qx(x, t)+1−Q(x, t)), Q(x, 0) = 1+ex (3.3)

Following the FRPSM algorithm with N = 10, we obtain γN(x) = ex, N =

1, 2, . . . , 10. So, the 10th truncated MFPS isQ10(x, t) = 1+ex
∑10

k=0

tβk

Γ(kβ + 1)
.

Hence, we may conclude that the N-th truncated MFPS has the form:

QN(x, t) = 1 + ex
N
∑

k=0

tβk

Γ(kβ + 1)
, (3.4)
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and the exact solution is

Q(x, t) = 1 + ex
∞
∑

k=0

tβk

Γ(kβ + 1)
= 1 + exEβ(t

β), (3.5)

where Eβ(t
β) is the Mittag-Leffler function [1]. To check our assumption in

(3.2), we compute ResidQ(x, t) which must be zero. In fact,

ResidQ(x, t) =
∗

t D
β
0Q(x, t)−Qxx(x, t)−Q(x, t)(Qx(x, t) + 1−Q(x, t))

=∗

t D
β
0 (1 + exEβ(t

β))− d2

dx2
(1 + exEβ(t

β))

− (1 + exEβ(t
β))(

d

dx
(1 + exEβ(t

β)) + 1− (1 + exEβ(t
β))) = 0.

The surface plots for β ∈ {0.8, 0.6} when t ∈ [0, 4] and x ∈ [−4, 4] are pre-
sented in Figure 1.

Figure 1: The surface plots for the analytic solutions with (a) β = 0.8 and
(b) β = 0.6 for example 3.1.

Example 3.2 Consider the TF-RDC equation:

∗

tD
β
0Q(x, t) = (Q(x, t)Qx(x, t))x + Q(x, t)(3Qx(x, t) + 2− 2Q(x, t)), (3.6)

Q(x, 0) = 2
√
ex − e−4x.

Using the FRPSM, we obtain:

γ0(x) = 2
√
ex − e−4x, γ1(x) = 4

√
ex − e−4x, γ2(x) = 8

√
ex − e−4x,

γ3(x) = 16
√
ex − e−4x, γ4(x) = 32

√
ex − e−4x, γ5(x) = 64

√
ex − e−4x
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So, the fifth truncated power series of (3.3) is

Q5(x, t) = 2
√
ex − e−4x(1 +

2tβ

Γ(β + 1)
+

4t2β

Γ(2β + 1)
+

8t3β

Γ(3β + 1)
+

16t4β

Γ(4β + 1)

+
32t5β

Γ(5β + 1)
) = 2

√
ex − e−4x

5
∑

k=0

(2tβ)k

Γ(kβ + 1)
.

Hence, we may suggest the N-th truncated MFPS as

QN(x, t) = 2
√
ex − e−4x

N
∑

k=0

(2tβ)k

Γ(kβ + 1)
,

and the exact solution as

Q(x, t) = 2
√
ex − e−4x

∞
∑

k=0

(2tβ)k

Γ(kβ + 1)
= 2

√
ex − e−4xEβ(2t

β).

The FRPSM converges rapidly to the exact solution as it is evident from
Figure 2 that represents the N-truncated MFPS for different number of iter-
ations at x = 1 and β = 0.75. Also, some tabulated values of ResidQ,20(2, t)
are listed in Table 1. On the other hand, we display the solution curves when
β ∈ {1, 0.95, 0.85, 0.75} and x = 1 in Figure 3 to notice the effect of Caputo
fractional operator to the TF-RDC in (3.3).

Figure 2: The Nth FRPS solution at x = 1 for example 3.2.
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Figure 3: Comparison between the exact and approximate solutions at x = 1
for example 3.2.

Table 1: The 20-th residual errors at x=1 for example 3.2
t β = 0.95 β = 0.85 β = 0.75
0.0 0.0 0.0 0.0
0.1 −5.66558× 10−30 −1.93763× 10−25 −5.27035× 10−21

0.2 −2.9704× 10−24 −2.53969× 10−20 −1.72699× 10−16

0.3 −6.58489× 10−21 −2.50226× 10−17 −7.56238× 10−14

0.4 −1.55734× 10−18 −3.32882× 10−15 −5.6590× 10−12

0.5 −1.08062× 10−16 −1.47829× 10−13 −1.60838× 10−10

0.6 −3.45238× 10−15 −3.27976× 10−12 −2.47804× 10−9

0.7 −6.45814× 10−14 −4.50752× 10−11 −2.50213× 10−8

0.8 −8.16496× 10−13 −4.36315× 10−10 −1.85434× 10−7

0.9 −7.65336× 10−12 −3.23142× 10−9 −1.08512× 10−6

1.0 −5.66558× 10−11 −1.93763× 10−8 −5.27035× 10−6

4 Conclusion

In this paper, we apply an analytic method to solve TF-RDC. The proposed
algorithm proved its efficiency to get MFPS solutions that rapidly converge
to the exact solutions with less effort and times. Its power appeared in its
success in obtaining the exact solutions for this type of nonlinear fractional
PDEs.
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The effect of the Caputo fractional derivative on TF-RDC was obvious
through plotting the solution curves for different values of the fractional
order. These curves approach the solution of classical integer order RDC as
the fractional order approaches the integer order.
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