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Abstract

In this article, we find all positive integer solutions of the Diophan-

tine Equation 1

a
+ 1

b
= m

pq
, where m is a positive integer and p, q are

distinct prime numbers.

1 Introduction

Let m be a positive integer and p, q be distinct prime numbers. Recently,
researchers have been interested in studying all positive integer solutions of
the Diophantine equation in the form

1

a
+

1

b
=

m

pq
. (1.1)

For example, in 2022, Johnson [1] found all positive integer solutions of the
equation (1.1), where m = q+1 with (q−1) | (p+1). After that, Prugsapitak
([2],[3]) considered the casem = q−1 with p > q. In this paper, we investigate
all positive integer solutions of the equation (1.1) for any positive integer m
using only elementary methods.
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2 Main Results

Throughout this paper, we assume that m is a positive integer and p, q are
distinct prime numbers. First, we find all positive integer solutions (a, b) of
the equation (1.1), when m = 1.

Lemma 2.1. If m = 1, then all positive integer solutions of (1.1) are

(a, b) ∈ {(p(p+ q), q(p+ q)), (p(q + 1), pq(q + 1)), (pq(p+ 1), q(p+ 1)),

(2pq, 2pq), (pq(pq + 1), pq + 1)}.

Proof. Let (a, b) be a positive integer solution of (1.1). Then (a+ b)pq = ab.
Since p is prime, we have p | a or p | b. Without loss of generality, we may
assume that p | a. Then a = pa1, for some positive integer a1. It implies
that (pa1 + b)q = a1b. Therefore, q | a1b.

Case 1. q | b. Then there exists a positive integer b1 such that b = qb1.
Thus qb1 = a1(b1 − p) from which it follows that a1 | qb1. Since q is prime,
we consider the following two subcases.

Subcase 1.1 gcd(q, a1) = 1. Then a1 | b1 and so b1 = a1b2, for some pos-
itive integer b2. Thus p = (a1−q)b2. If p = a1−q and b2 = 1, then a1 = p+q

and b1 = p+q. Therefore, (a, b) = (p(p+q), q(p+q)). If p = b2 and a1−q = 1,
then a1 = q + 1 and b1 = p(q + 1). Hence (a, b) = (p(q + 1), pq(q + 1)).

Subcase 1.2 gcd(q, a1) = q. Then q | a1 and so a1 = qa2, for some
positive integer a2. It implies that pa2 = (a2 − 1)b1. Since p is prime, we get
gcd(p, b1) = 1 or p. Assume that gcd(p, b1) = 1. Since gcd(a2, a2−1) = 1, we
obtain p = a2−1 and a2 = b1. Thus a2 = p+1, b1 = p+1 and a1 = q(p+1).
Then (a, b) = (pq(p + 1), q(p + 1)). If gcd(p, b1) = p, then p | b1 and so
b1 = pb2, for some positive integer b2. Consequently, a2 = (a2 − 1)b2. Then
a2 = b2 = 2. Therefore, a1 = 2q and b1 = 2p. Thus (a, b) = (2pq, 2pq).

Case 2. q ∤ b. Then gcd(q, b) = 1 and q | a1. So we have a1 = qa2, for
some positive integer a2. Thus pqa2 = (a2 − 1)b. Since gcd(a2, a2 − 1) = 1,
we have two possible subcases.

Subcase 2.1 pa2 = b and q = a2−1. Then a2 = q+1 and so a1 = q(q+1).
Thus (a, b) = (pq(q + 1), p(q + 1)).
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Subcase 2.2 a2 = b and pq = a2−1. Then a2 = pq+1 and a1 = q(pq+1).
Thus (a, b) = (pq(pq + 1), pq + 1).

When we divide (1.1) by m, it is easy to verify the following theorem, by
Lemma 2.1.

Theorem 2.2. For any positive integer m , the all positive integer solutions
of (1.1) are

(a, b) ∈{(
p(p+ q)

m
,
q(p+ q)

m
), (

p(q + 1)

m
,
pq(q + 1)

m
), (

pq(p+ 1)

m
,
q(p+ 1)

m
),

(
2pq

m
,
2pq

m
), (

pq(pq + 1)

m
,
pq + 1

m
)} ∩ Z× Z.
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