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Abstract

In 2019, Burshtein [1] showed that the equation px+py = z2 has no
positive integer solution, except for p = 2, 3. For p = 2, all solutions
of the equation in the Fibonacci and Lucas numbers was investigated
by Hashim [2]. In this paper, we prove that (x, y, z) = (F5, L3, L6) is
the unique solution of the equation, when p = 3.

1 Introduction

Let p be prime and x, y, z be positive integers with x ≤ y. In 2019, Burshtein
[1] found that the Diophantine equation px + py = z2 has no positive integer
solution, except for p = 2, 3. In 2023, Hashim [2] studied all solutions of the
equation in the Fibonacci and Lucas numbers, when p = 2. In this paper, we
find all solutions of the equation in the Fibonacci and Lucas numbers, when
p = 3. In other words, we solve the following equations:

3Fi + 3Fj = F 2

k , (1.1)
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3Fi + 3Fj = L2

k, (1.2)

3Li + 3Lj = F 2

k , (1.3)

3Li + 3Lj = L2

k, (1.4)

3Fi + 3Lj = F 2

k , (1.5)

3Fi + 3Lj = L2

k, (1.6)

where the indices i, j, k are positive integers and Fn, Ln represent the nth
terms of the Fibonacci and Lucas sequences, respectively, that are defined
by the initial values F0 = 0, F1 = 1 and L0 = 2, L1 = 1 and the recurrence
relations Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2, where n ≥ 2.

2 Preliminaries

Theorem 2.1. [1] All positive integer solutions of the equation 3x+3y = z2

are given by (x, y, z) = (2n, 2n+ 1, 2 · 3n), where n is a positive integer.

Proposition 2.2. [3] Let n be a positive integer. Then

1. Fn+1 + Fn−1 = Ln,

2. Fn+2 − Fn−2 = Ln.

Lemma 2.3. If i is a positive integer with i ≥ 7, then Fi ≥ Lj + 2, for all
positive integer j ≤ i− 2.

Proof. We prove this lemma by induction on i. It easy to see that F7 ≥ Lj+2,
for all positive integer j ≤ 5. Suppose that Fi ≥ Lj+2, for all positive integer
j ≤ i − 2. Then Fi+1 ≥ Fi ≥ Lj + 2, for all positive integer j ≤ i − 2. It
remains only to consider case j = i − 1. By Proposition 2.2 (2) and i ≥ 7,
we have Lj + 2 = Li−1 + 2 = Fi+1 − Fi−3 + 2 ≤ Fi+1 − 1 < Fi+1.

3 Main Results

Theorem 3.1. The equation 3x + 3y = z2 has only one positive integer so-
lution in the Fibonacci and Lucas numbers; i.e., (x, y, z) = (F5, L3, L6).
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Proof. Consider (1.1) and (1.2). Without loss of generality, we may assume
that Fi ≤ Fj . By Theorem 2.1, we have Fi = 2n and Fj = 2n + 1, for
some positive integer n. Then i = 3 and j = 4. From (1.1) and (1.2), we
get Fk = Lk = 6, which is a contradiction. Next, we consider (1.3) and
(1.4). Without loss of generality, we assume that Li ≤ Lj . By Theorem
2.1, we obtain Li = 2n and Lj = 2n + 1, for some positive integer n. Then
Lj − Li = 1. Thus i = 2 and j = 3. This implies that 3 = 2n, which is also
a contradiction. Then (1.1)-(1.4) have no solution.

Finally, we consider (1.5) and (1.6). Assume that i ≤ j. Then Fi ≤ Fj ≤

Lj . By Theorem 2.1, we obtain Fi = 2n and Lj = 2n + 1, for some positive
integer n. Therefore, Lj = Fi +1. By Proposition 2.2 (1) and i ≤ j, we have
2Fj−1−1 = Fi−Fj ≤ 0. Thus j = 1, n = 0, and so i = 0. This is impossible,
since i > 0. Then i > j. For i ≥ 7, we consider the following two cases:

Case 1. Fi ≤ Lj. By Theorem 2.1, we obtain Fi = 2n and Lj = 2n+ 1,
for some positive integer n. Then Lj = Fi+1. Thus, by Lemma 2.3, we have
j = i − 1, and so Li−1 = Fi + 1. By Proposition 2.2 (1), we get Fi−2 = 1.
This is impossible, since i ≥ 7.

Case 2. Fi > Lj . By Theorem 2.1, we obtain Fi = 2n + 1 and Lj = 2n,
for some positive integer n. Therefore Fi = Lj + 1. By Lemma 2.3, we see
that j = i−1. Then Fi = Li−1+1. By Proposition 2.2 (1), we get Fi−2 = −1,
a contradiction.

Thus i < 7. Since i > j, we get j < 7. It easy to check that (1.5) has no
solution and (1.6) has only one solution. That is (x, y, z) = (F5, L3, L6).
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