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Abstract

In this article, we show that (x, y, z) = (0, 0, 0) is the unique non-
negative integer solution of the Diophantine equations (p+a)x−p

y =
z
2 and p

x− (p+ a)y = z
2, where a is a positive integer and p is prime

with some conditions.

1 Introduction

In recent years, all non-negative integer solutions of the Diophantine equation
ax−by = z2 has been extensively investigated, where a and b are fixed positive
integers. Some of these can be seen in [4], [6], [12], [16], [17], [18], [19] and
[20]. Moreover, many researchers extended solving the equation for a or b
being prime. In 2019, Burshtein [3] found all positive integer solutions of
the equations (p + 1)x − py = z2 and px − (p + 1)y = z2, where p is prime
and x+ y = 2, 3, 4. In the same year, Burshtein [5] also solved the equation
px − py = z2, when p is prime.

Additionally, in 2020, Elshahed and Kamarulhaili [7] studied the non-
negative integer solutions of the equation (4n)x − py = z2, where p is odd
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prime and n is a positive integer. Buosi el at. ([1], [2]) found the non-negative
integer solutions for the equation px − 2y = z2, where p = k2 + n is prime,
k is a positive integer and n ∈ {2, 4}. In 2022, Orosram and Unchai [9]
solved the equation 22nx − py = z2, where n is a positive integer and p is
prime. Tadee [11] showed that (x, y, z) = (0, 0, 0) is the unique non-negative
integer solution of the equation (p+6)x−py = z2, where p is prime with p ≡ 1
(mod 28). In 2023, Tadee [13] also studied the equation 3x−py = z2, where p
is prime. Moreover, Tadee and Laomalaw [14] proved that (x, y, z) = (0, 0, 0)
is the unique non-negative integer solution of the equation (p+2)x−py = z2,
where p is prime with p ≡ 5 (mod 24).

Motivated by the above papers, we give some conditions such that (x, y, z) =
(0, 0, 0) is the unique non-negative integer solution of two equations:

(p+ a)x − py = z2 (1.1)

and

px − (p+ a)y = z2, (1.2)

where a is a positive integer and p is prime.

2 Preliminaries

In this section, we begin by introducing an important and useful theorem,
which was proved by Mihăilescu [8] in 2004:

Theorem 2.1. [8] (Mihăilescu’s Theorem) The equation ax − by = 1 has
the unique solution (a, b, x, y) = (3, 2, 2, 3), where a, b, x and y are positive
integers with min {a, b, x, y} > 1.

Next, we recall the basic concepts of order of an integer, primitive root
and Legendre symbol (See [10]).

Definition 2.2. Let m be a positive integer. Then the Euler phi function,
denoted by ϕ(m), is the cardinality of the set {1 < n < m : gcd(n,m) = 1}.

Definition 2.3. Let m be a positive integer and let a be any integer relatively
prime to m. If h is the least positive integer such that ah ≡ 1 (mod m), then
h is called the order of a modulo m and is denoted by ordma = h.
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Definition 2.4. Let m be a positive integer and let a be any integer relatively
prime to m. If ordma = ϕ(m), then a is called a primitive root modulo m.

Theorem 2.5. Let j, k be positive integers and ordma = h. Then aj ≡ ak

(mod m) if and only if j ≡ k (mod h).

Theorem 2.6. Let a be a positive integer and let p be prime with gcd(a, p) =

1. If ordpa = p− 1, then a
p−1

2 ≡ −1 (mod p).

Definition 2.7. Let a be a positive integer and let p be odd prime. The

Legendre symbol,
(

a
p

)

, is defined by

(

a

p

)

=











1 if x2 ≡ a (mod p) is solvable

0 if p | a

−1 if x2 ≡ a (mod p) is not solvable

.

Theorem 2.8. [15] Let p and q be distinct odd prime with q ≡ 1 (mod 4).
Then

(

q

p

)

=

{

1 if p ≡ q + rS1q + rS1 (mod 2q)

−1 if p ≡ q + rS2q + rS2 (mod 2q)
,

where S1 ∈ {2, 4, 6, ..., q − 1}, S2 ∈ {1, 3, 5, ..., q − 2} and r is a primitive
root modulo q.

3 Main Results

Theorem 3.1. Let a be a positive integer with a ≡ 2 (mod 4) and let p be
prime with p ≡ 1 (mod 4). If a ≡ −1, 1 (mod p), then the Diophantine
equation (1.1) has the unique non-negative integer solution; i.e., (x, y, z) =
(0, 0, 0).

Proof. Let x, y and z be non-negative integers such that the equation (1.1)
is true. We consider the following four cases:
Case 1. x = 0 and y = 0. From (1.1), we get z = 0. Then (x, y, z) = (0, 0, 0).
Case 2. x = 0 and y ≥ 1. From (1.1), it follows that 1 − py = z2 and so
z2 < 0, a contradiction.
Case 3. x ≥ 1 and y = 0. From (1.1), we have (p + a)x − z2 = 1. Assume
that x = 1. Then p + a− 1 = z2. Since a ≡ 2 (mod 4) and p ≡ 1 (mod 4),
we get z2 ≡ 2 (mod 4), which is impossible since z2 ≡ 0, 1 (mod 4). Thus
x > 1. If z = 0, then (p + a)x = 1 and so x = 0, a contradiction. If z = 1,
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then (p + a)x = 2. Therefore, x = 1 and p + a = 2, a contradiction. Thus
z > 1, which contradicts Theorem 2.1.
Case 4. x ≥ 1 and y ≥ 1. From (1.1) and z2 ≡ 0, 1 (mod 4), we get
(−1)x − 1 ≡ 0, 1 (mod 4). Thus x = 2k for some positive integer k. From
(1.1), we have [(p+ a)k − z][(p+ a)k + z] = py. Since p is prime, there exists
a non-negative integer u such that (p+ a)k − z = pu and (p+ a)k + z = py−u.
Thus 2(p+a)k = pu[py−2u+1]. Assume that u > 0. Since p is prime, we have
p | a, which is impossible since a ≡ −1, 1 (mod p). Then u = 0. It follows
that 2(p + a)k = py + 1 and so 2ak ≡ 1 (mod p), which is impossible since
a ≡ −1, 1 (mod p) and p 6= 3.

By Theorem 3.1, if a = p+ 1, then we have the following corollary:

Corollary 3.2. If p is prime with p ≡ 1 (mod 4), then the Diophantine
equation (2p + 1)x − py = z2 has the unique solution (x, y, z) = (0, 0, 0),
where x, y and z are non-negative integers.

Theorem 3.3. Let a and p be distinct odd prime with a ≡ 1 (mod 4p) and
p ≡ a+rS2a+rS2 (mod 2a), where S2 ∈ {1, 3, 5, ..., a− 2} and r is a primitive
root modulo a. If x 6= 1, then the Diophantine equation (1.1) has the unique
non-negative integer solution; i.e., (x, y, z) = (0, 0, 0).

Proof. Let x, y and z be non-negative integers with x 6= 1 such that (1.1) is
true. We consider the following four cases:
Case 1. x = 0 and y = 0. From (1.1), we get z = 0. Then (x, y, z) = (0, 0, 0).
Case 2. x = 0 and y ≥ 1. From (1.1), we obtain 1− py = z2 and so z2 < 0,
a contradiction.
Case 3. x > 1 and y = 0. From (1.1), we have (p + a)x − z2 = 1. If z = 0,
then we get (p + a)x = 1 and so x = 0, a contradiction. If z = 1, then
(p + a)x = 2. Thus x = 1 and p + a = 2, a contradiction. Therefore, z > 1,
which is impossible, by Theorem 2.1.
Case 4. x > 1 and y ≥ 1. Assume that x is odd. From (1.1), it follows that

ax ≡ z2 (mod p), which is impossible since
(

ax

p

)

=
(

a
p

)x

= (−1)x = −1,

by Theorem 2.8. Thus x = 2k for some positive integer k. From (1.1), we
have [(p + a)k − z][(p + a)k + z] = py. Since p is prime, there exists a non-
negative integer u such that (p + a)k − z = pu and (p + a)k + z = py−u.
Thus 2(p + a)k = pu[py−2u + 1]. Assume that u > 0. Since p is prime, we
have p | a, which is impossible since a ≡ 1 (mod p). Then u = 0. That is
2(p+ a)k = py + 1 and so 2 ≡ 1 (mod p), which also is impossible.
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Theorem 3.4. Let a be a positive integer with a ≡ 2 (mod 4) and p be
prime with p ≡ 3 (mod 4). If p + a is prime, gcd(p, a+ 1) = 1 and ordpa =
p−1, then the Diophantine equation (1.2) has the unique non-negative integer
solution; i.e. (x, y, z) = (0, 0, 0).

Proof. Let x, y and z be non-negative integers such that the equation (1.2)
is true. We consider the following four cases:
Case 1. x = 0 and y = 0. From (1.2), we get z = 0. Then (x, y, z) = (0, 0, 0).
Case 2. x = 0 and y ≥ 1. From (1.2), we get 1−(p+a)y = z2 and so z2 < 0,
a contradiction.
Case 3. x ≥ 1 and y = 0. From (1.2), it follows that px − z2 = 1. Assume
that x = 1. Then p = z2 + 1. Since z2 ≡ 0, 1 (mod 4), we get z2 + 1 ≡ 1, 2
(mod 4) and so p ≡ 1, 2 (mod 4), a contradiction. Thus x > 1. It is easy to
see that z /∈ {0, 1}. Therefore z > 1, which is impossible, by Theorem 2.1.
Case 4. x ≥ 1 and y ≥ 1. From (1.2) and z2 ≡ 0, 1 (mod 4), we get
(−1)x − 1 ≡ 0, 1 (mod 4). Thus x = 2k for some positive integer k. From
(1.2), we have (pk − z)(pk + z) = (p+ a)y. Since p+ a is prime, there exists
a non-negative integer v such that pk − z = (p+ a)v and pk + z = (p+ a)y−v.
Thus 2pk = (p + a)v[(p + a)y−2v + 1]. Since p and p + a are prime, we have
v = 0. Then 2pk = (p + a)y + 1 and so ay ≡ −1 (mod p). Assume that y is
odd. Therefore, 2pk = (p + a + 1)[(p + a)y−1 − (p + a)y−2 + · · ·+ 1] and so
p | (a+1), which is impossible since gcd(p, a+1) = 1. Thus y = 2h for some
positive integer h. Therefore, a2h ≡ −1 (mod p). Since ordpa = p − 1 and

Theorem 2.6, we have a
p−1

2 ≡ −1 (mod p). Then a2h ≡ a
p−1

2 (mod p). By
Theorem 2.5, we get 2h ≡ p−1

2
(mod p − 1). There exists an integer t such

that 2h = (p− 1)t+ p−1

2
. Since 2h and (p− 1)t are even, we get p−1

2
is even

and so p ≡ 1 (mod 4), which is impossible since p ≡ 3 (mod 4).
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