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Abstract

In this paper, we present a new analytical scheme to generate

atomic solutions of partial differential equations. The theory of tensor

product in Banach spaces coupled with some features of atomics oper-

ators are utilized to attain our results. Some demonstrative examples

are given for completeness.
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1 Introduction

A Partial Differential Equation (PDE) is an equation involving an unknown
function of several variables and its partial derivatives [1, 2]. Many of the
foundational theories underlying physics and engineering are expressed by
means of partial differential equations [3, 4, 5]. For example, the theory of
electromagnetism, including light, can be handled by four partial differential
equations called Maxwell’s equations. The motion of fluids (including both
air and water) can be modeled by the Navier-Stokes system of partial dif-
ferential equations. Moreover, the continuum mechanics theory, that is used
to describe the mechanical behavior of many complex dynamic systems such
as granular materials and financial markets, is based on the formulation of
partial differential equations [6]. Unlike the theory of ordinary differential
equations which centers upon one main theorem that is the existence and
uniqueness theorem, it is not easy to master the theory of partial differential
equations [7, 8, 9, 10]. There is no general theory known concerning the solv-
ability of all partial differential equations of a given order, even numerically,
and classes for which we have general analytic methods of solution are quite
restricted [11, 12, 13]. Thus we have to study fairly small classes of partial
differential equations individually [14, 15].

The Fourier method, or separation of variables, is one of the most used
methods for solving partial differential equations. The concept behind this
approach is to reduce the linear partial differential equation to a collection of
ordinary differential equations, from which additional solutions can be con-
structed by generating linear combinations of the original set of solutions, so
making use of the notion of superposition [16, 17]. The variable separation
method is not without its limits, though. To apply this strategy, a lot of
restrictions must be placed on the coefficient expressions and the compan-
ion beginning and boundary conditions. It is only useful in extremely rare
situations where high degree of symmetry equations are involved. When us-
ing the separation of variables method to solve partial differential equations,
the solution is typically divided into a product of functions, each of which
depends on a single independent variable. In other words, the final solution
can be expressed as the product of multiple functions, each of which depends
only on one independent variable.

Some of the analytical and numerical techniques of solving partial differ-
ential equations are Fourier transform, Laplace transform, Green’s functions,
finite element method (FEM), finite volume methods (FVM), and finite dif-
ference methods (FDM) [18, 19]. In 2010, Khalil [20] introduced a novel
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method to solve differential equations for both ordinary and fractional or-
ders. This technique was based on the theory of tensor product of Banach
spaces and it can be utilized to obtain the so-called atomic solutions of the
differential equation under study. As far as we know, there are a few studies
regarding such a technique that were put forward to solve linear and nonlin-
ear 2D partial differential equations. From this point of view, in this paper,
we endeavor to introduce a new analytical approach for producing atomic
solutions for some kinds of partial differential equations. Before we intro-
duce our main result for atomic solutions of partial differential equations
with ordinary orders, we commence with the next definition and theorem
[21, 22, 23, 24, 25].

2 Atoms Operators

In this section, we introduce some preliminaries related to the main result of
this paper.

Definition 2.1. [22] Let X and Y be any two Banach spaces and let X∗

is the corresponding dual space of X. For x ∈ X and y ∈ Y , the operator
T : X∗ → Y , defined by

T (x∗) = x∗(x)y = 〈x, x∗〉 y,

is a bounded one rank linear operator. We write x⊗y for T and such operators
are called atoms.

Atoms are used in the theory of best approximation in Banach spaces
[26, 27] and they are considered among the fundamental ingredients in the
theory of tensor product. One of the known results that we need in our paper
can be presented in the next theorem [28] which guarantees that if the sum
of two atoms is an atom, then either the first components are dependent or
the second ones are dependent.

Theorem 2.2. [28] Let x1 ⊗ y1 and x2 ⊗ y2 be two nonzero atoms in X ⊗ Y

such that

x1 ⊗ y1 + x2 ⊗ y2 = x3 ⊗ y3.

Then either x1 = x2 = x3 or y1 = y2 = y3.

A nice application of tensor product is the next interesting theorem.
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Theorem 2.3. [24] Let I and J be two compact intervals, and C (I), C (J),
and C (I × J) be the spaces of continuous functions on I, J , and I × J,

respectively. Then every f ∈ C (I × J) can be written in the form

f(x, y) =
∞
∑

i=1

ui (x) vi (y) , (2.1)

where ui (x) ∈ C (I) and vi (y) ∈ C (J).

In this paper, our main object is to obtain an atomic solution that is a
solution of the form u (x, y) = P (x)Q (y) to the following partial differential
equation

uxx (x, y) + uxy (x, y) = f(x)g(y),

where u is an unknown function and f , g are given. Clearly, equation (3.2)
is inseparable as we cannot move the x-terms to one side and the y-terms to
the other. Hence the method of separation of variables does not work.

3 General Scheme for Atomic SolutionMethod

Consider the following general two-dimensional non-homogeneous linear par-
tial differential equation:

uxx (x, y) + uxy (x, y) = f(x)g(y), (3.2)

where u is an unknown function and f , g are given and subject to the fol-
lowing conditions:

u (0, 0) = 1, ux (0, 0) = 1, and uy (0, 0) = 1. (3.3)

According to Theorem 2.2, we start our approach with assuming that

u (x, y) = P (x)Q (y) . (3.4)

Now, we substitute (3.4) into the main partial differential equation (3.2).
Hence

P ′′ (x)Q (y) + P ′ (x)Q′ (y) = f(x)g(y). (3.5)

Clearly, each term of (3.5) is just a product of two functions one of them is
pure in x and the other is pure in y. Therefore, in tensor product form, (3.5)
can be presented as

P ′′ (x)⊗Q (y) + P ′ (x)⊗Q′ (y) = f(x)⊗ g(y), (3.6)
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which implies that the sum of two atoms is an atom. By Theorem 2.3, we
have one of the following two cases:

(i) P ′′ (x) = P ′ (x) = f(x),
(ii) Q′ (y) = Q (y) = g(y).

(3.7)

Case (i) : This case has the following three situations:

(a) P ′′ (x) = P ′ (x) ,
(b) P ′′ (x) = f (x) ,
(c) P ′ (x) = f(x).

From (3.3), without loss of generality, we can assume that

P (0) = Q (0) = P ′ (0) = Q′ (0) = 1. (3.8)

From situation (a) and conditions (3.8), we get

P (x) = ex. (3.9)

Now, by considering (3.9) and both situations (b) and (c), we have f (x) = ex.
Thus an atomic solution can be obtained for case (i) provided that f (x) = ex;
otherwise, there is no available atomic solution.

The next step is to substitute P (x) = f(x) = ex into (3.5) which implies

Q′ (y) +Q (y) = g(y). (3.10)

Clearly, (3.10) is a first order linear ordinary differential equation and its
general solution can be obtained by multiplying equation (3.10) by the inte-
grating factor; namely, I = ey. Hence

Q (y) = e−y

∫

eyg(y) dy. (3.11)

Thus the first atomic solution with respect to case (i) can be obtained by
considering (3.4), (3.9) and (3.11) as follows:

u1 (x, y) = ex
(

e−y

∫

eyg(y) dy

)

. (3.12)

On the other hand, for case (ii), we have the following three situations

(a∗) Q′ (y) = Q (y) ,
(b∗) Q′ (y) = g (y) ,
(c∗) Q (y) = g(y).
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From situation (a∗) and (3.8), we get

Q (y) = ey. (3.13)

Now, by considering (3.13) and both situations (b∗) and (c∗), we have g(y) =
ey. Thus, a second atomic solution can be obtained for case (ii) provided
that g(y) = ey; otherwise, there is no available atomic solution for this case.
Our next step is to substitute Q (y) = g(y) = ey into (3.5) which implies

P ′′ (x) + P ′ (x) = f(x). (3.14)

Clearly, (3.10) is a second order linear non-homogeneous ordinary differen-
tial equation with constant coefficients and its general solution has the form
P (x) = Ph (x)+Pp (x) , where Ph (x) = 2−e−x is the complementary solution
that can be obtained by considering the companion homogeneous equation;
namely, P ′′ (x) + P ′ (x) = 0 together with P (0) = 1 and P ′ (0) = 1 (3.8).
While the particular solution Pp (x) can be obtained by the method of vari-
ation of parameters as follows:

Pp (y) =

∫ −e−xf(x)

W [1, e−x]
dx+ e−x

∫

f(x)

W [1, e−x]
dx

=

∫

f(x) dx− e−x

∫

exf(x) dx, (3.15)

where W [1, e−x] is the Wronskian of 1 and e−x. Therefore, the general solu-
tion to (3.14) is given by

P (x) = Ph (x) + Pp (x)

= 2− e−x +

∫

f(x) dx− e−x

∫

exf(x) dx. (3.16)

Hence the second atomic solution with respect to case (ii) can be obtained
by considering (3.4), (3.13) and (3.16) as follows:

u2 (x, y) = ey
(

2− e−x +

∫

f(x) dx− e−x

∫

exf(x) dx

)

. (3.17)

4 Applications

In this section, we utilize the new method of atomic solutions to derive two
examples for solving partial differential equations for which the separation
of variables method does not work. These examples are provided to describe
how one can deal with linear and nonlinear 2D partial differential equations,
respectively.
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Example 1. Consider the following linear 2D partial differential equation

uxx + uyy = uxy, (4.18)

where u(x, y) is the unknown function and subject to the following conditions:

u (0, 0) = 1, ux (0, 0) = 1, and uy (0, 0) = 1. (4.19)

By substituting u (x, y) = P (x)Q (y) into (4.18) we get

P ′′ (x)Q (y) + P (x)Q′′ (y) = P ′ (x)Q′ (y) . (4.20)

Therefore, in tensor product form, (4.20) becomes

P ′′ (x)⊗Q (y) + P (x)⊗Q′′ (y) = P ′ (x)⊗Q′ (y) . (4.21)

By Theorem 2.3, we have one of the following two cases:

(i) P ′′ (x) = P ′ (x) = P (x) ,
(ii) Q′′ (y) = Q′ (y) = Q (y) .

(4.22)

Hence, for case (i), we have the following three situations:

(a) P ′′ (x) = P ′ (x) ,
(b) P ′′ (x) = P (x) ,
(c) P ′ (x) = P (x) .

From (3.3), without loss of generality, we can assume that

P (0) = Q (0) = P ′ (0) = Q′ (0) = 1. (4.23)

From situation (a) and by the conditions (4.23), we get

P (x) = ex. (4.24)

Also, both situations (b) and (c), together with conditions from (4.23), give
the same result in (4.24). Therefore, an atomic solution exists with respect
to case (i) .Now, we proceed by substituting (4.24) into (4.20) which implies
Q′′ (y)−Q′ (y) +Q (y) = 0. This equation and conditions from (4.23) yield

Q (y) =
1√
3
e

1

2
y sin

(√
3

2
y

)

+ e
1

2
y cos

(√
3

2
y

)

. (4.25)



910 W. G. Alshanti, I. M. Batiha, A. Alshanty, R. Khalil

Hence, referring to (4.24) and (4.25), the first atomic solution with respect
to case (i) is

u1 (x, y) = ex

[

1√
3
e

1

2
y sin

(√
3

2
y

)

+ e
1

2
y cos

(√
3

2
y

)]

. (4.26)

Similarly, for case (ii), we have the same three situations as those for case
(i); namely, Q′′ (y) = Q′ (y), Q′′ (y) = Q (y), and Q′ (y) = Q (y) , where
Q (0) = 1 and Q′ (0) = 1 (4.23). Hence the second atomic solution with
respect to case (ii) is

u2 (x, y) = ey

[

1√
3
e

1

2
x sin

(√
3

2
x

)

+ e
1

2
x cos

(√
3

2
x

)]

. (4.27)

The two atomic solutions u1(x, y) (4.26) and u2(x, y) (4.27) of problem
(4.18) are displayed in Figure 1 and Figure 2 respectively.

Figure 1: The first atomic solution u1(x, y) (4.26) of problem (4.18).

Example 2. Consider the following non-linear 2-D partial differential equa-
tion

uxxuyy + uxuy = uxu, (4.28)

where u(x, y) is the unknown function and subject to the following conditions:

u (0, 0) = 1, ux (0, 0) = 1, and uy (0, 0) = 1. (4.29)

By substituting u (x, y) = P (x)Q (y) into (4.28), we get

P ′′ (x)Q′′ (y) + P ′ (x)Q′ (y) = P ′ (x)Q (y) . (4.30)
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Figure 2: The second atomic solution u2(x, y) (4.27) of problem (4.18).

Therefore, in tensor product form, (4.30) becomes

P ′′ (x)⊗Q′′ (y) + P ′ (x)⊗Q′ (y) = P ′ (x)⊗Q (y) . (4.31)

By Theorem 2.3, the two resultant cases are

(i) P ′′ (x) = P ′ (x) = P ′ (x) ,
(ii) Q′′ (y) = Q′ (y) = Q (y) .

(4.32)

From (4.29), without loss of generality, we can assume that

P (0) = Q (0) = P ′ (0) = Q′ (0) = 1. (4.33)

First, form case (i), we have only one situation that is P ′′ (x) = P ′ (x) . This
equation together with the two conditions P (0) = 1 and P ′ (0) = 1 (4.33)
give

P (x) = ex. (4.34)

Now, substituting (4.34) into the main equation (4.30) yields Q′′ (y)+Q′ (y)−
Q (y) = 0, where Q (0) = 1 and Q′ (0) = 1 (4.33) and hence

Q (y) =
1

2
√
5

[

(

3 +
√
5
)

e

(

−1

2
+

√

5

2

)

y
+
(√

5− 3
)

e

(

−1

2
−

√

5

2

)

y

]

. (4.35)

So, the first atomic solution corresponding to case (i) can be obtained by
considering (4.34) and (4.35) as follows:

u1 (x, y) =
ex

2
√
5

[

(

3 +
√
5
)

e

(

−1

2
+

√

5

2

)

y
+
(√

5− 3
)

e

(

−1

2
−

√

5

2

)

y

]

. (4.36)
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For case (ii), we have the following three situations, namely,

(a∗) Q′′ (y) = Q′ (y) ,
(b∗) Q′′ (y) = Q (y) ,
(c∗) Q′ (y) = Q (y) .

Noting that from the three situation (a∗), (b∗), and (c∗) one can get Q (x) = ey

by assuming the conditions Q (0) = 1 and Q′ (0) = 1 (4.33). Therefore, a
second atomic solution exists with respect to case (ii). Now, we substitute
Q (x) = ey into (4.30) which implies P ′′ (x) = 0. But, P (0) = 1 and P ′ (0) =
1 as in (4.33). So P (x) = x and, as a result, the second atomic solution
with respect to case (ii) is

u2 (x, y) = xey. (4.37)

The two atomic solutions u1(x, y) (4.36) and u2(x, y) (4.37) of problem (4.28)
are displayed in Figure 3 and Figure 4, respectively.

Figure 3: The first atomic solution u1 (x, y) (4.36) of problem (4.28).

Figure 4: The second atomic solution u2 (x, y) (4.37) of problem (4.28).
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5 Conclusions

Through the use of atomic solutions, a newl analytical technique for solv-
ing non-linear and non-homogeneous partial differential equations has been
effectively presented in this work. To arrive at such a notion, the idea of ten-
sor product of Banach spaces along with certain features of atomic operators
have been used. It is decided to save several other types of partial differen-
tial equations for later research. However, we emphasize the following points:

1. In most cases, the atomic solution approach can give exact solutions to
inseparable, non-homogeneous, and non-linear partial differential equations
when the method of separation of variables does not work.

2. It is not necessary that each case reported in Theorem 1 admits an
atomic solution. This means that the three situations of each case have to
provide the same result; otherwise, there is no available atomic solution.
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