Sequential Total Network Interactions: Connectivity and Proximity Properties

Rosalio G. Artes Jr. ${ }^{1}$, Roxanne A. Anunciado ${ }^{2}$
Radana E. Madalim ${ }^{1}$, Jeffrey Imer C. Salim ${ }^{1}$ Bayah J. Amiruddin-Rajik ${ }^{1}$
${ }^{1}$ Mindanao State University
Tawi-Tawi College of Technology and Oceanography
Sanga-Sanga, 7500 Bongao, Tawi-Tawi, Philippines
${ }^{2}$ Philippine Science High School
SOCCSKSARGEN Region Campus
9506 Koronadal City, South Cotabato, Philippines
email: rosalioartes@msutawi-tawi.edu.ph
anunciadoroxanne@gmail.com
radanamadalim@msutawi-tawi.edu.ph
jeffreyimersalim@msutawi-tawi.edu.ph
bayahamiruddin@msutawi-tawi.edu.ph

(Received October 13, 2023, Accepted December 6, 2023, Published February 12, 2024)

Abstract

In this paper, we model a network obtained by sequential total linear interactions of independent sequence of finite networks. We determined the connectivity of the nodes and the proximity of every pair of nodes of the resulting network structure.

1 Introduction

Network analysis plays a very important role in optimization problems. Networks considered in this study are simple and undirected. We denote a

Key words and phrases: Network interactions, connectivity, proximity.
AMS (MOS) Subject Classifications: 05C12, 05C35, 68R10.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
network by $N=\langle n(N), l(N)\rangle$, where $n(N)$ is the set of nodes of N, called the node-set of N and $l(N)$ is the set of links of N, called the link-set of N. The order of N is the number of nodes of N and is denoted by $|n(N)|$. The size of N is the number of links of N and is denoted by $|l(N)|$. A link in N joins two nodes of N. If u and v are joined in N, then we say that $u v$ is a link in N and we write $u v \in l(N)$. In this case, u and v are adjacent. We say that a network is simple if it has no loops and no multiple links. A loop in a network N is an link in N from a node to itself. If u and v are joined by more than one link, then we say that u and v are connected by multiple links. We say that N is connected (with respect to adjacency) if for every $u, v \in n(N)$, there is a path in N joining u and v. A path in N is a sequence $\left[v_{1}, v_{1} v_{2}, v_{2}, v_{2} v_{3}, v_{3}, v_{3} v_{4}, \ldots, v_{n-1}, v_{n-1} v_{n}, v_{n}\right]$ of nodes and links in N. A path network of order n with nodes $v_{1}, v_{2}, \ldots, v_{n}$ (in this order) is simply denoted by $P_{n}=\left[v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right]$.

A subset S of $n(N)$ is said to be independent in N if the elements of S are pairwise non-adjacent in N. This means that for any two nodes $u, v \in S$, $u v \notin l(N)$. In this case, we call S an independent set.

A network M is a subnetwork of N if $n(M) \subseteq n(N)$ and $l(M) \subseteq l(N)$. A subnetwork M of N is called an induced subnetwork of N if any two nodes in M are adjacent in M if and only if they are adjacent in N. If S is a subset of $n(N)$, then a subnetwork with node-set S and with adjacency in S follows from the adjacency in N, then the network obtained in this manner is an induced subnetwork with vertex-set S. In this case, we write the subnetwork induced by S in N as $\langle S\rangle_{N}$ or simply $\langle S\rangle$ when there is no confusion. We write $\langle S\rangle_{N}$ to mean that S is a subset of $n(N)$.

Let N be a simple and undirected network. The connectivity of a node u of N, denoted by $\operatorname{con}_{N}(u)$, is the number of nodes of N adjacent to u. A network N is said to be normalized if the proximity between two adjacent nodes is 1 . This means that the weight/length of the link joining them is 1. The proximity between two nodes u and v in a normalized network N, denoted by $\operatorname{prox}_{N}(u, v)$, is the length of a shortest path joining them. If there is no path joining u and v in N, then $\operatorname{prox}_{N}(u, v)=+\infty$. Equivalently, the proximity between u and v is the geodetic distance between u and v as defined in [1].

2 Results

A sequence of finite networks $\left\langle N_{i}\right\rangle_{i=1}^{k}$ is said to be independent if $\left[n\left(N_{s}\right)\right] \cap$ $\left[n\left(N_{t}\right)\right]=\varnothing$ for $s \neq t$. Let $I=\{1,2, \ldots, k\}$ be an indexing set. The sequential total interactions of independent networks $N_{1}, N_{2}, \ldots, N_{k}$ is the network

$$
\bigoplus_{i \in I}^{\leftrightarrow} N_{i}=N_{1} \stackrel{\leftrightarrow}{\oplus} N_{2} \stackrel{\leftrightarrow}{\oplus} \cdots \stackrel{\leftrightarrow}{\oplus} N_{k}
$$

with node-set

$$
n\left(\stackrel{\leftrightarrow}{\bigoplus} N_{i \in I}\right)=\bigcup_{i=1}^{k} n\left(N_{i}\right)
$$

and link-set

$$
l\left(\bigoplus_{i \in I}^{\leftrightarrow} N_{i}\right)=\bigcup_{i=1}^{k} l\left(N_{i}\right) \cup \bigcup_{i=1}^{k-1}\left\{u v: u \in n\left(N_{i}\right), v \in n\left(N_{i+1}\right)\right\} .
$$

From the above definition, the order of $\bigoplus_{i \in I}^{\stackrel{\leftrightarrow}{\bigoplus}} N_{i}$ is

$$
\left|n\left(\bigoplus_{i \in I}^{\stackrel{\leftrightarrow}{\bigoplus}} N_{i}\right)\right|=\sum_{i=1}^{k}\left|n\left(N_{i}\right)\right|
$$

and the size is

$$
\left|l\left(\bigoplus_{i \in I}^{\leftrightarrow} N_{i}\right)\right|=\sum_{i=1}^{k}\left|l\left(N_{i}\right)\right|+\sum_{i=1}^{k-1}\left|n\left(N_{i}\right)\right|\left|n\left(N_{i+1}\right)\right| .
$$

For $k=2$, the sequential total interaction of N_{1} and N_{2} is equivalent to the join of N_{1} and N_{2} (viewed as graphs) as defined in the book by Harary [2].

Based on the above definition of sequential total network interactions of a sequence of finite networks, we have the following results.

Lemma 2.1. Let $\left\langle N_{i}\right\rangle_{i=1}^{k}$ be a sequence of finite networks and $u \in n\left(N_{s}\right), v \in$ $n\left(N_{t}\right)$ withs $\neq t$. Then dist $\oplus_{i \in I}^{\leftrightarrow} N_{i}(u, v)=|s-t|$.

Lemma 2.2. Let $\left\langle N_{i}\right\rangle_{i=1}^{k} \subseteq \mathcal{N}$ be a sequence of finite networks and $\{u, v\} \subseteq$ $n\left(\bigoplus_{i \in I}^{\leftrightarrow} N_{i}\right)$. Then dist $\oplus_{i \in I}^{\leftrightarrow} N_{i}(u, v)=1$ if and only if one of the following holds:
(i) $u v \in l\left(N_{i}\right)$ for some $i \in\{1,2, \ldots, k\}$.
(ii) There exists $s \in\{1,2, \ldots, k-1\}$ such that $u \in n\left(N_{s}\right)$ and $v \in n\left(N_{s+1}\right)$.

The following result characterizes the connectivity of every node in $\bigoplus_{i \in I} N_{i}$.
Theorem 2.3. Let $\langle N i\rangle_{i=1}^{k}$ be a sequence of finite networks and $N=\bigoplus_{i \in I}^{\leftrightarrow} N_{i}$. Then the following hold:
(i) For every $u \in n\left(N_{1}\right), \operatorname{con}_{N}(u)=\operatorname{con}_{N_{1}}(u)+\left|n\left(N_{2}\right)\right|$.
(ii) For every $v \in n\left(N_{k}\right), \operatorname{con}_{N}(v)=\operatorname{con}_{N_{k}}(v)+\left|n\left(N_{k-1}\right)\right|$.
(iii) For every $w \in N_{i}$, where $i \in\{2,3, \ldots, k-1\}, \operatorname{con}_{N}(w)=\operatorname{con}_{N_{i}}(w)+$ $\left|n\left(N_{i-1}\right)\right|+\left|n\left(N_{i+1}\right)\right|$.

Proof.
(i) Let $u \in n\left(N_{1}\right)$. The result follows from the connectivity of u in N_{1} and since u is also connected to all nodes in N_{2}.
(ii) Let $v \in n\left(N_{k}\right)$. The result follows from the connectivity of v in N_{k} and since v is also connected to all nodes in N_{k-1}.
(iii) Let $i \in\{2,3, \ldots, k-1\}$ and let $w \in n\left(N_{i}\right)$. Then w is connected to all nodes in N_{i-1} and N_{i+1}. Adding its connectivity in N_{i}, we have the desired result.

The proof is complete.
The following result establishes the proximity of pairs of nodes in $\bigoplus_{i \in I}^{\stackrel{\leftrightarrow}{~}} N_{i}$.
Theorem 2.4. Let $\langle N i\rangle_{i=1}^{k}$ be a sequence of finite networks and $N=\bigoplus_{i \in I}^{\stackrel{\leftrightarrow}{\bigoplus}} N_{i}$. Then the following hold:
(i) If $u \in n\left(N_{s}\right)$ and $v \in n\left(N_{t}\right)$ with $s \neq t$, then $\operatorname{prox}_{N}(u, v)=|s-t|$.
(ii) If $\{u, v\} \subseteq n\left(N_{i}\right)$ for some $i \in\{1,2, \ldots, k\}$, then
(a) $\operatorname{prox}_{N}(u, v)=1$ whenever $u v \in l\left(N_{i}\right)$
(b) $\operatorname{prox}_{N}(u, v)=2$ whenever $u v \notin l\left(N_{i}\right)$.

Proof. Let $u, v \in n(N)$.
(i) Suppose without loss of generality that $u \in n\left(N_{s}\right)$ and $v \in n\left(N_{t}\right)$ where $s<t$. Consider the sequence of networks $\left\langle N_{s}, N_{s+1}, N_{s+2}, \ldots, N_{t-1}, N_{t}\right\rangle$. For each pair (x, y) with $x \in n\left(N_{p}\right)$ and $y \in n\left(N_{p+1}\right)$ for $p \in\{s, s+$ $1, \ldots, t-1\}$, $\operatorname{prox}_{G}(x, y)=1$. Hence, $\operatorname{prox}_{N}(u, v)=t-s=|s-t|=$ $|t-s|$.
(ii) (a) This is clear since $u v \in l\left(\bigoplus_{i \in I}^{\leftrightarrow} N_{i}\right)$ whenver $u v \in l\left(N_{i}\right)$ for some $i \in\{1,2, \ldots, k\}$.
(b) Suppose $u v \notin l\left(N_{i}\right)$. If $i=1$, then for every $w \in n\left(N_{2}\right), u w, w v \in$ $l(N)$. Hence, $[u, w, v]$ is a $u-v$ geodesic in N. Hence, $\operatorname{prox}_{N}(u, v)=$ 2. If $i>1$, then every $z \in n\left(N_{i-1}\right),[u, z, v]$ is a $u-v$ geodesic in N. Hence, $\operatorname{prox}_{N}(u, v)=2$.

The proof is complete.

References

[1] A.M. Asdain, J.I.C. Salim, R.G. Artes Jr., Geodetic Bounds in Graphs, International Journal of Mathematics and Computer Science, 18, no. 4, (2023), 767-771.
[2] F. Harary, Graph Theory, CRC Press, Boca Raton, 2018.
[3] M.E. Van Valkenburg, Network Analysis, Prentice Hall, New Jersey, 1974.

