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Abstract

In this paper, we model a network obtained by sequential total

linear interactions of independent sequence of finite networks. We

determined the connectivity of the nodes and the proximity of every

pair of nodes of the resulting network structure.

1 Introduction

Network analysis plays a very important role in optimization problems. Net-
works considered in this study are simple and undirected. We denote a
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network by N = 〈n(N), l(N)〉, where n(N) is the set of nodes of N , called
the node-set of N and l(N) is the set of links of N , called the link-set of N .
The order of N is the number of nodes of N and is denoted by |n(N)|. The
size of N is the number of links of N and is denoted by |l(N)|. A link in
N joins two nodes of N . If u and v are joined in N , then we say that uv
is a link in N and we write uv ∈ l(N). In this case, u and v are adjacent.
We say that a network is simple if it has no loops and no multiple links. A
loop in a network N is an link in N from a node to itself. If u and v are
joined by more than one link, then we say that u and v are connected by
multiple links. We say that N is connected (with respect to adjacency) if
for every u, v ∈ n(N), there is a path in N joining u and v. A path in N is
a sequence [v1, v1v2, v2, v2v3, v3, v3v4, . . . , vn−1, vn−1vn, vn] of nodes and links
in N . A path network of order n with nodes v1, v2, . . . , vn (in this order) is
simply denoted by Pn = [v1, v2, v3, . . . , vn].

A subset S of n(N) is said to be independent in N if the elements of S
are pairwise non-adjacent in N . This means that for any two nodes u, v ∈ S,
uv /∈ l(N). In this case, we call S an independent set.

A network M is a subnetwork of N if n(M) ⊆ n(N) and l(M) ⊆ l(N). A
subnetwork M of N is called an induced subnetwork of N if any two nodes in
M are adjacent in M if and only if they are adjacent in N . If S is a subset
of n(N), then a subnetwork with node-set S and with adjacency in S follows
from the adjacency in N , then the network obtained in this manner is an
induced subnetwork with vertex-set S. In this case, we write the subnetwork
induced by S in N as 〈S〉N or simply 〈S〉 when there is no confusion. We
write 〈S〉N to mean that S is a subset of n(N).

Let N be a simple and undirected network. The connectivity of a node
u of N , denoted by conN(u), is the number of nodes of N adjacent to u. A
network N is said to be normalized if the proximity between two adjacent
nodes is 1. This means that the weight/length of the link joining them is
1. The proximity between two nodes u and v in a normalized network N ,
denoted by proxN (u, v), is the length of a shortest path joining them. If
there is no path joining u and v in N , then proxN(u, v) = +∞. Equivalently,
the proximity between u and v is the geodetic distance between u and v as
defined in [1].
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2 Results

A sequence of finite networks 〈Ni〉ki=1 is said to be independent if [n(Ns)] ∩
[n(Nt)] = ∅ for s 6= t. Let I = {1, 2, . . . , k} be an indexing set. The
sequential total interactions of independent networks N1, N2, . . . , Nk is the
network
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For k = 2, the sequential total interaction of N1 and N2 is equivalent to
the join of N1 and N2 (viewed as graphs) as defined in the book by Harary
[2].

Based on the above definition of sequential total network interactions of
a sequence of finite networks, we have the following results.

Lemma 2.1. Let 〈Ni〉ki=1 be a sequence of finite networks and u ∈ n(Ns), v ∈
n(Nt)withs 6= t. Then dist⊕↔

i∈I
Ni
(u, v) = |s− t|.

Lemma 2.2. Let 〈Ni〉ki=1 ⊆ N be a sequence of finite networks and {u, v} ⊆
n(
⊕

↔

i∈I Ni). Then dist⊕↔

i∈I
Ni
(u, v) = 1 if and only if one of the following

holds:
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(i) uv ∈ l(Ni) for some i ∈ {1, 2, . . . , k}.

(ii) There exists s ∈ {1, 2, . . . , k−1} such that u ∈ n(Ns) and v ∈ n(Ns+1).

The following result characterizes the connectivity of every node in
⊕

↔

i∈I Ni.

Theorem 2.3. Let 〈Ni〉ki=1 be a sequence of finite networks and N =
↔
⊕

i∈I

Ni.

Then the following hold:

(i) For every u ∈ n(N1), conN(u) = conN1
(u) + |n(N2)|.

(ii) For every v ∈ n(Nk), conN(v) = conNk
(v) + |n(Nk−1)|.

(iii) For every w ∈ Ni, where i ∈ {2, 3, . . . , k − 1}, conN (w) = conNi
(w) +

|n(Ni−1)|+ |n(Ni+1)|.

Proof.

(i) Let u ∈ n(N1). The result follows from the connectivity of u in N1 and
since u is also connected to all nodes in N2.

(ii) Let v ∈ n(Nk). The result follows from the connectivity of v in Nk and
since v is also connected to all nodes in Nk−1.

(iii) Let i ∈ {2, 3, . . . , k − 1} and let w ∈ n(Ni). Then w is connected to
all nodes in Ni−1 and Ni+1. Adding its connectivity in Ni, we have the
desired result.

The proof is complete. �

The following result establishes the proximity of pairs of nodes in
↔
⊕

i∈I

Ni.

Theorem 2.4. Let 〈Ni〉ki=1 be a sequence of finite networks and N =

↔
⊕

i∈I

Ni.

Then the following hold:

(i) If u ∈ n(Ns) and v ∈ n(Nt) with s 6= t, then proxN(u, v) = |s− t|.

(ii) If {u, v} ⊆ n(Ni) for some i ∈ {1, 2, . . . , k}, then

(a) proxN(u, v) = 1 whenever uv ∈ l(Ni)
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(b) proxN(u, v) = 2 whenever uv /∈ l(Ni).

Proof. Let u, v ∈ n(N).

(i) Suppose without loss of generality that u ∈ n(Ns) and v ∈ n(Nt) where
s < t. Consider the sequence of networks 〈Ns, Ns+1, Ns+2, . . . , Nt−1, Nt〉.
For each pair (x, y) with x ∈ n(Np) and y ∈ n(Np+1) for p ∈ {s, s +
1, . . . , t− 1}, proxG(x, y) = 1. Hence, proxN(u, v) = t − s = |s− t| =
|t− s|.

(ii) (a) This is clear since uv ∈ l

(

↔
⊕

i∈I

Ni

)

whenver uv ∈ l(Ni) for some

i ∈ {1, 2, . . . , k}.

(b) Suppose uv /∈ l(Ni). If i = 1, then for every w ∈ n(N2), uw,wv ∈
l(N). Hence, [u, w, v] is a u-v geodesic in N . Hence, proxN (u, v) =
2. If i > 1, then every z ∈ n(Ni−1), [u, z, v] is a u-v geodesic in
N . Hence, proxN(u, v) = 2.

The proof is complete. �
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