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Abstract

Our main purpose is to introduce the notion of C -Λ(τ1,τ2)-closed

sets. Moreover, we study some properties of C -Λ(τ1,τ2)-closed sets.

1 Introduction

The notions of closed sets and open sets are fundamental in the investigation
of general topology. Levine [12] introduced the notion of generalized closed
sets. This notion has been studied extensively in recent years by many topolo-
gists because generalized closed sets are only natural generalizations of closed
sets. Dunham and Levine [9] investigated further properties of generalized
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closed sets. Moreover, Levine defined a separation axiom called T 1

2

between
T0 and T1. As a modification of generalized closed sets, Palaniappan and
Rao [14] introduced and studied the notion of regular generalized closed sets.
Dungthaisong et al. [8] investigated the notion of generalized closed sets in
bigeneralized topological spaces and studied some characterizations of pair-
wise µ-T 1

2

spaces. Viriyapong and Boonpok [15] introduced and investigated

the notion of generalized (Λ, p)-closed sets. Furthermore, some properties
of generalized (Λ, α)-closed sets, generalized δp(Λ, s)-closed sets, generalized
(Λ, s)-closed sets and generalized (Λ, sp)-closed sets were studied in [2], [3],
[4] and [5], respectively. Maki [13] called a subset A of a topological space
(X, τ) a Λ-set if it is the intersection of open sets containing A. Arenas et
al. [1] defined a subset A to be λ-closed if A = L∩F , where L is a Λ-set and
F is closed in (X, τ). Ganster et al. [10] introduced and studied the notion
of pre-Λ-sets in topological spaces. In this paper, we introduce the notion of
C -Λ(τ1,τ2)-closed sets. Moreover, some properties of C -Λ(τ1,τ2)-closed sets are
investigated.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [6] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [6] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained
in A is called the τ1τ2-interior [6] of A and is denoted by τ1τ2-Int(A). The
set ∩{G | A ⊆ G and G is τ1τ2-open} is called the τ1τ2-kernel [6] of A and
is denoted by τ1τ2-ker(A). A subset A of a bitopological space (X, τ1, τ2) is
called a Λ(τ1,τ2)-set [7] if A = τ1τ2-ker(A).

3 Properties of C -Λ(τ1,τ2)-closed sets

In this section, we introduce the notion of C -Λ(τ1,τ2)-closed sets. Moreover,
we discuss some properties of C -Λ(τ1,τ2)-closed sets.
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Definition 3.1. A subset A of a bitopological space (X, τ1, τ2) is said to be
C -Λ(τ1,τ2)-closed if A = U ∩F , where U is a Λ(τ1,τ2)-set and F is a τ1τ2-closed
set of X.

Lemma 3.2. [7] For subsets A and Bγ(γ ∈ Γ) of a bitopological space (X, τ1, τ2),
the following properties hold:

(1) τ1τ2-ker(A) is a Λ(τ1,τ2)-set.

(2) If A is a τ1τ2-open set, then A is a Λ(τ1,τ2)-set.

(3) If Bγ is a Λ(τ1,τ2)-set for each γ ∈ Γ, then ∪γ∈ΓBγ is a Λ(τ1,τ2)-set.

(4) If Bγ is a Λ(τ1,τ2)-set for each γ ∈ Γ, then ∩γ∈ΓBγ is a Λ(τ1,τ2)-set.

Theorem 3.3. For a subset A of a bitopological space (X, τ1, τ2), the follow-
ing properties are equivalent:

(1) A is C -Λ(τ1,τ2)-closed;

(2) A = τ1τ2-Cl(A) ∩ U , where U is a Λ(τ1,τ2)-set;

(3) A = τ1τ2-Cl(A) ∩ τ1τ2-ker(A).

Proof. (1) ⇒ (2): Let A = U ∩ F , where U is a Λ(τ1,τ2)-set and F is a τ1τ2-
closed set of X . Since A ⊆ F , we have τ1τ2-Cl(A) ⊆ F and A = U ∩ F ⊇
τ1τ2-Cl(A) ∩ U ⊇ A. Thus A = τ1τ2-Cl(A) ∩ U .

(2) ⇒ (3): Let A = τ1τ2-Cl(A)∩U , where U is a Λ(τ1,τ2)-set. Since A ⊆ U ,
we have τ1τ2-ker(A) ⊆ τ1τ2-ker(U) = U and hence

A ⊆ τ1τ2-ker(A) ∩ τ1τ2-Cl(A) ⊆ τ1τ2-Cl(A) ∩ U = A.

Therefore, A = τ1τ2-Cl(A) ∩ τ1τ2-ker(A).
(3) ⇒ (1): By Lemma 3.2, τ1τ2-ker(A) is a Λ(τ1,τ2)-set and τ1τ2-Cl(A) is

τ1τ2-closed. By (3), A = τ1τ2-Cl(A) ∩ τ1τ2-ker(A) and hence A is C -Λ(τ1,τ2)-
closed.

Lemma 3.4. Let (X, τ1, τ2) be a bitopological space. Then the following
properties hold:

(1) Every Λ(τ1,τ2)-set of X is C -Λ(τ1,τ2)-closed.

(2) Every τ1τ2-closed set of X is C -Λ(τ1,τ2)-closed.
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Lemma 3.5. Let (X, τ1, τ2) be a bitopological space and {Aγ | γ ∈ Γ} be a
family of subsets of X. If Aγ is C -Λ(τ1,τ2)-closed for each γ ∈ Γ, then ∩γ∈ΓAγ

is C -Λ(τ1,τ2)-closed.

Proof. Suppose that Aγ is C -Λ(τ1,τ2)-closed for each γ ∈ Γ. Then, for each
γ ∈ Γ, there exists a Λ(τ1,τ2)-set Uγ and a τ1τ2-closed set Fγ such that Aγ =
Uγ ∩Fγ . Thus ∩γ∈ΓAγ = ∩γ∈Γ(Uγ ∩ Fγ) = (∩γ∈ΓUγ)∩ (∩γ∈ΓFγ). By Lemma
3.2, ∩γ∈ΓUγ is a Λ(τ1,τ2)-set and ∩γ∈ΓFγ is τ1τ2-closed. This shows that ∩γ∈ΓAγ

is C -Λ(τ1,τ2)-closed.

Definition 3.6. [7] A bitopological space (X, τ1, τ2) is said to be:

(1) (τ1, τ2)-T0 if for any pair of distinct points in X, there exists a τ1τ2-open
set containing one of the points but not the other.

(2) (τ1, τ2)-T1 if for any pair of distinct points x, y in X, there exist τ1τ2-
open sets U and V such that x ∈ U , y 6∈ U and y ∈ V , x 6∈ V .

Theorem 3.7. A bitopological space (X, τ1, τ2) is (τ1, τ2)-T0 if and only if
for each x ∈ X, the singleton {x} is C -Λ(τ1,τ2)-closed.

Proof. Suppose that (X, τ1, τ2) is (τ1, τ2)-T0. For each x ∈ X , we have {x} ⊆
τ1τ2-ker({x}) ∩ τ1τ2-Cl({x}). If y 6= x, we have (i) there exists a τ1τ2-open
set Ux such that x ∈ Ux and y 6∈ Ux or (ii) there exists a τ1τ2-open set Uy

such that x 6∈ Uy and y 6∈ Uy. In case (i), y 6∈ τ1τ2-ker({x}) and hence
y 6∈ τ1τ2-ker({x}) ∩ τ1τ2-Cl({x}). This shows that

{x} ⊇ τ1τ2-ker({x}) ∩ τ1τ2-Cl({x}).

Thus {x} = τ1τ2-ker({x})∩τ1τ2-Cl({x}) and by Theorem 3.3, {x} is C -Λ(τ1,τ2)-
closed.

Conversely, suppose that (X, τ1, τ2) is not (τ1, τ2)-T0. There exist distinct
points x, y such that (i) y ∈ Ux for every τ1τ2-open set Ux containing x

and (ii) x ∈ Uy for every τ1τ2-open set Uy containing y. By (i) and (ii),
y ∈ τ1τ2-ker({x}) ∩ τ1τ2-Cl({x}) = {x} by Theorem 3.3. This is contrary to
x 6= y.

Definition 3.8. [11] A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-R0

if for each τ1τ2-open set U and each x ∈ U , τ1τ2-Cl({x}) ⊆ U .

Lemma 3.9. [7] For a bitopological space (X, τ1, τ2), the following properties
are equivalent:
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(1) (X, τ1, τ2) is (τ1, τ2)-T1;

(2) (X, τ1, τ2) is (τ1, τ2)-R0 and (τ1, τ2)-T0;

(3) (X,Λ(τ1,τ2)) is R0 and T0;

(4) (X,Λ(τ1,τ2)) is T1;

(5) (X,Λ(τ1,τ2)) is discrete.

Lemma 3.10. [7] For a bitopological space (X, τ1, τ2), the following proper-
ties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-T1;

(2) for each x ∈ X, the singleton {x} is τ1τ2-closed in X;

(3) for each x ∈ X, the singleton {x} is a Λ(τ1,τ2)-set.

Corollary 3.11. Let (X, τ1, τ2) be a (τ1, τ2)-R0 space. For each x ∈ X, the
following properties are equivalent:

(1) The singleton {x} is C -Λ(τ1,τ2)-closed.

(2) (X, τ1, τ2) be a (τ1, τ2)-T1.

(3) The singleton {x} is τ1τ2-closed.

Proof. (1) ⇒ (2): By Theorem 3.7, (X, τ1, τ2) is (τ1, τ2)-T0 and (τ1, τ2)-R0

and hence by Lemma 3.9, (X, τ1, τ2) is (τ1, τ2)-T1.
(2) ⇒ (3): By Lemma 3.10, the singleton {x} is τ1τ2-closed.
(3) ⇒ (1): By Lemma 3.4, the singleton {x} is C -Λ(τ1,τ2)-closed.
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