International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 809–814

Characterizations of weakly $s(\Lambda, p)$ -open functions and weakly $s(\Lambda, p)$ -closed functions

Chalongchai Klanarong, Chawalit Boonpok

Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

email: chalongchai.k@msu.ac.th, chawalit.b@msu.ac.th

(Received July 23, 2023, Accepted January 31, 2024, Published February 12, 2024)

Abstract

In this article, we deal with the notions of weakly $s(\Lambda, p)$ -open functions and weakly $s(\Lambda, p)$ -closed functions. Moreover, we establish several characterizations of weakly $s(\Lambda, p)$ -open functions and weakly $s(\Lambda, p)$ -closed functions.

1 Introduction

In 1984, Rose [11] introduced and studied the notions of weakly open functions and almost open functions. Rose and Janković [10] investigated some of the fundamental properties of weakly closed functions. In 2004, Caldas and Navalagi [5] introduced two new classes of functions called weakly preopen functions and weakly preclosed functions. Weak preopenness (resp. weak preclosedness) is a generalization of weak openness (resp. weak closedness). In 2006, Caldas et al. [4] introduced and investigated the notions of weakly semi- θ -open functions and weakly semi- θ -closed functions. Noiri and Popa

Key words and phrases: Weakly $s(\Lambda, p)$ -open function, weakly $s(\Lambda, p)$ -open function. **AMS (MOS) Subject Classifications**: 54A05, 54C10. The corresponding author is Chalongchai Klanarong. **ISSN** 1814-0432, 2024, http://ijmcs.future-in-tech.net [9] studied a new class of functions called *M*-closed functions as functions defined between sets satisfying some conditions. In 2008, Caldas and Navalagi [3] presented the class of weak δ -openness (resp. weak δ -closedness) as a new generalization of δ -openness (resp. δ -closedness) and investigated several characterizations of weakly δ -open functions and weakly δ -closed functions. In [1], the present authors introduced and studied the notions of weakly $p(\Lambda, p)$ -open functions and weakly $p(\Lambda, p)$ -closed functions. Some characterizations of weakly $b(\Lambda, p)$ -open functions and weakly $\delta(\Lambda, p)$ -open functions were investigated in [6] and [13], respectively. Furthermore, several characterizations of (Λ, p)-closed functions and weakly $\delta(\Lambda, p)$ -closed functions were established in [7] and [8], respectively. In this article, we introduce the notions of weakly $s(\Lambda, p)$ -open functions and weakly $s(\Lambda, p)$ -closed functions. In particular, we discuss some characterizations of weakly $s(\Lambda, p)$ -open functions and weakly $s(\Lambda, p)$ -open functions.

2 Preliminaries

A subset A of a topological space (X, τ) is called (Λ, p) -closed [2] if A = $T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. The family of all (Λ, p) -open sets in a topological space (X,τ) is denoted by $\Lambda_p O(X,\tau)$. Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, p) -cluster point [2] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -cluster points of A is called the (Λ, p) -closure [2] of A and is denoted by $A^{(\Lambda,p)}$. The union of all (Λ, p) -open sets of X contained in A is called the (Λ, p) -interior [2] of A and is denoted by $A_{(\Lambda,p)}$. A subset A of a topological space (X, τ) is said to be $s(\Lambda, p)$ -open [2] (resp. $p(\Lambda, p)$ -open, $\alpha(\Lambda, p) \text{-}open [14], r(\Lambda, p) \text{-}open [2]) \text{ if } A \subseteq [A_{(\Lambda, p)}]^{(\Lambda, p)} \text{ (resp. } A \subseteq [A^{(\Lambda, p)}]_{(\Lambda, p)}, \\ A \subseteq [[A_{(\Lambda, p)}]^{(\Lambda, p)}]_{(\Lambda, p)}, A = [A^{(\Lambda, p)}]_{(\Lambda, p)}). \text{ The complement of a } s(\Lambda, p) \text{-}open$ (resp. $p(\Lambda, p)$ -open, $\alpha(\Lambda, p)$ -open, $r(\Lambda, p)$ -open) set is called $s(\Lambda, p)$ -closed (resp. $p(\Lambda, p)$ -closed, $\alpha(\Lambda, p)$ -closed, $r(\Lambda, p)$ -closed). The intersection of all $s(\Lambda, p)$ -closed sets of X containing A is called the $s(\Lambda, p)$ -closure of A and is denoted by $A^{s(\Lambda,p)}$. The union of all $s(\Lambda,p)$ -open sets of X contained in A is called the $s(\Lambda, p)$ -interior of A and is denoted by $A_{s(\Lambda, p)}$. A subset A of a topological space (X, τ) is called $\theta(\Lambda, p)$ -closed [2] if $A = A^{\theta(\Lambda, p)}$. The complement of a $\theta(\Lambda, p)$ -closed set is said to be $\theta(\Lambda, p)$ -open. A point $x \in X$ is called a $\theta(\Lambda, p)$ -interior point [12] of A if $x \in U \subset U^{(\Lambda, p)} \subset A$ for some $U \in \Lambda_p O(X, \tau)$. The set of all $\theta(\Lambda, p)$ -interior points of A is called the

Characterizations of weakly $s(\Lambda, p)$ -open functions...

 $\theta(\Lambda, p)$ -interior [12] of A and is denoted by $A_{\theta(\Lambda, p)}$.

Lemma 2.1. [12] For subsets A and B of a topological space (X, τ) , the following properties hold:

- (1) $X A^{\theta(\Lambda,p)} = [X A]_{\theta(\Lambda,p)}$ and $X A_{\theta(\Lambda,p)} = [X A]^{\theta(\Lambda,p)}$.
- (2) A is $\theta(\Lambda, p)$ -open if and only if $A = A_{\theta(\Lambda, p)}$.
- (3) $A \subseteq A^{(\Lambda,p)} \subseteq A^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq A_{(\Lambda,p)} \subseteq A$.
- (4) If $A \subseteq B$, then $A^{\theta(\Lambda,p)} \subseteq B^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq B_{\theta(\Lambda,p)}$.
- (5) If A is (Λ, p) -open, then $A^{(\Lambda, p)} = A^{\theta(\Lambda, p)}$.

3 Characterizations of weakly $s(\Lambda, p)$ -open functions

In this section, we introduce the notion of weakly $s(\Lambda, p)$ -open functions. Moreover, some characterizations of weakly $s(\Lambda, p)$ -open functions are discussed.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly $s(\Lambda, p)$ open if $f(U) \subseteq [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$ for each (Λ, p) -open set U of X.

Theorem 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $s(\Lambda, p)$ -open;
- (2) $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{s(\Lambda,p)}$ for every subset A of X;
- (3) $[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{s(\Lambda,p)})$ for every subset B of Y;
- (4) $f^{-1}(B^{s(\Lambda,p)}) \subseteq [f^{-1}(B)]^{\theta(\Lambda,p)}$ for every subset B of Y.

Proof. The proof follows from Theorem 3.2 of [6].

Theorem 3.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective function. Then the following properties are equivalent:

- (1) f is weakly $s(\Lambda, p)$ -open;
- (2) $[f(U)]^{s(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ,p) -open set U of X;

(3)
$$[f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f(K)$$
 for every (Λ,p) -closed set K of X.

Proof. The proof follows from Theorem 3.2 of [1].

Theorem 3.4. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $s(\Lambda, p)$ -open;
- (2) for each $x \in X$ and each (Λ, p) -open set U of X containing x, there exists a $s(\Lambda, p)$ -open set V of Y containing f(x) such that $V \subseteq f(U^{(\Lambda, p)})$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and U be any (Λ, p) -open set of X containing x. Since f is weakly $s(\Lambda, p)$ -open, $f(x) \in f(U) \subseteq [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$. Put $V = [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$, then V is a $s(\Lambda, p)$ -open set of Y containing f(x) such that $V \subseteq f(U^{(\Lambda,p)})$.

 $(2) \Rightarrow (1)$: Let U be any (Λ, p) -open set of X and $y \in f(U)$. It follows from (2) that $V \subseteq f(U^{(\Lambda,p)})$ for some $s(\Lambda, p)$ -open set V of Y containing y. Thus $y \in V \subseteq [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$ and hence $f(U) \subseteq [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$. This shows that f is weakly $s(\Lambda, p)$ -open.

The proof of the following theorem is straightforward and thus is omitted.

Theorem 3.5. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

(1) f is weakly $s(\Lambda, p)$ -open;

(2)
$$f(K_{(\Lambda,p)}) \subseteq [f(K)]_{s(\Lambda,p)}$$
 for every (Λ, p) -closed set K of X;

- (3) $f([U^{(\Lambda,p)}]_{(\Lambda,p)}) \subseteq [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$ for every (Λ,p) -open set U of X;
- (4) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$ for every $p(\Lambda,p)$ -open set U of X;
- (5) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{s(\Lambda,p)}$ for every $\alpha(\Lambda,p)$ -open set U of X.

4 Characterizations of weakly $s(\Lambda, p)$ -closed functions

We begin this section by introducing the notion of weakly $s(\Lambda, p)$ -closed functions.

Characterizations of weakly $s(\Lambda, p)$ -open functions...

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly $s(\Lambda, p)$ closed if $[f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f(K)$ for each (Λ, p) -closed set K of X.

Theorem 4.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $s(\Lambda, p)$ -closed;
- (2) $[f(U)]^{s(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ,p) -open set U of X.

Proof. The proof follows from Theorem 4.1 of [1].

Theorem 4.3. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is weakly $s(\Lambda, p)$ -closed;
- (2) $[f(U)]^{s(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ every (Λ, p) -open set U of X;
- (3) $[f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)})$ every (Λ,p) -closed set K of X;
- (4) $[f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)})$ every $r(\Lambda,p)$ -closed set K of X;
- (5) $[f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f(K)$ every $p(\Lambda,p)$ -closed set K of X;
- (6) $[f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f(K)$ every $\alpha(\Lambda,p)$ -closed set K of X.

Proof. $(1) \Rightarrow (2)$: The proof follows from Theorem 4.2.

 $(2) \Rightarrow (3)$: Let K be any (Λ, p) -closed set of X. Then $K_{(\Lambda,p)}$ is (Λ, p) -open in X and by $(2), [f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)}).$

(3) \Rightarrow (4): This is obvious since every $r(\Lambda, p)$ -closed set is (Λ, p) -closed.

 $\begin{array}{l} (4) \Rightarrow (5): \text{ Let } K \text{ be any } p(\Lambda, p) \text{-closed set of } X. \text{ Then we have } [K_{(\Lambda, p)}]^{(\Lambda, p)} \subseteq \\ K. \text{ Since } [K_{(\Lambda, p)}]^{(\Lambda, p)} \text{ is } r(\Lambda, p) \text{-closed, by } (4), [f(K_{(\Lambda, p)})]^{s(\Lambda, p)} \subseteq [f([[K_{(\Lambda, p)}]^{(\Lambda, p)}]_{(\Lambda, p)})]^{s(\Lambda, p)} \subseteq \\ f([[[K_{(\Lambda, p)}]^{(\Lambda, p)}]_{(\Lambda, p)}]^{(\Lambda, p)}) = f([K_{(\Lambda, p)}]^{(\Lambda, p)}). \end{array}$

(5) \Rightarrow (6): This is obvious since every $\alpha(\Lambda, p)$ -closed set is $p(\Lambda, p)$ -closed.

(6) \Rightarrow (1): Let K be any (Λ, p) -closed set of X. Then K is $\alpha(\Lambda, p)$ -closed in X. Using (6), we have $[f(K_{(\Lambda,p)})]^{s(\Lambda,p)} \subseteq f(K)$. This shows that f is weakly $s(\Lambda, p)$ -closed.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, M. Thongmoon, Weakly $p(\Lambda, p)$ -open functions and weakly $p(\Lambda, p)$ -closed functions, Int. J. Anal. Appl., **22**, (2024), 10.
- [2] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15, no. 2, (2022), 415– 436.
- [3] M. Caldas, G. Navalagi, On generalizing δ -open functions, Pro Math., **22**, nos, 43-44, (2008), 101–119.
- [4] M. Caldas, S. Jafari, G. Navalagi, Weak forms of open and closed functions via semi-θ-open sets, Carpathian J. Math., 22, nos. 1-2, (2006), 21–31.
- [5] M. Caldas, G. Navalagi, On weak forms of preopen and preclosed functions, Archivum Math., 40, (2004), 119–128.
- [6] N. Chutiman, C. Boonpok, Some properties of weakly $b(\Lambda, p)$ -open functions, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 497–501.
- [7] J. Khampakdee, C. Boonpok, Properties of (Λ, p) -closed functions, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 481–484.
- [8] C. Klanarong, C. Boonpok, Characterizations of weakly $\delta(\Lambda, p)$ -closed functions, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 503–507.
- [9] T. Noiri, V. Popa, A unified theory of closed functions, Bull. Math. Soc. Math. Roumanie Tome, 49(97), no. 4, (2006), 371–382.
- [10] D. A. Rose, D. S. Janković, Weakly closed functions and Hausdorff spaces, Math. Nachr., 130, (1987), 105–110.
- [11] D. A. Rose, On weak openness and almost openness, Int. J. Math. Math. Sci., 7, (1984), 35–40.
- [12] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -continuous functions, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 475–479.
- [13] N. Srisarakham, C. Boonpok, On weakly $\delta(\Lambda, p)$ -open functions, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 485–489.
- [14] N. Viriyapong, C. Boonpok, On (Λ, p) -extremally disconnected spaces, Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 289–293.