International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 821–826

Generalized (τ_1, τ_2) -closed sets in bitopological spaces

Chokchai Viriyapong¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

 $email:\ chokchai.v@msu.ac.th,\ s_sompong@snru.ac.th,\ chawalit.b@msu.ac.th$

(Received December 14, 2023, Accepted February 1, 2024, Published February 12, 2024)

Abstract

In this paper, we deal with the notion of generalized (τ_1, τ_2) -closed sets. First, we introduce the notion of generalized (τ_1, τ_2) -closed sets. Next, we study some properties of generalized (τ_1, τ_2) -closed sets. Finally, we investigate some properties of generalized (τ_1, τ_2) -open sets.

1 Introduction

Levine [6] introduced the notion of generalized closed sets in topological spaces and defined the notion of a $T_{\frac{1}{2}}$ -space to be one in which the closed sets and the generalized closed sets coincide. Dunham and Levine [8] studied further properties of generalized closed sets. The notion of generalized closed

Key words and phrases: generalized (τ_1, τ_2) -closed set, generalized (τ_1, τ_2) -open set.

AMS (MOS) Subject Classifications: 54A05, 54E55.

The corresponding author is Chokchai Viriyapong.

sets has been modified and studied by using weaker forms of open sets such as semi-open sets, preopen sets, α -open sets and β -open sets. Dungthaisong et al. [7] investigated the notion of generalized closed sets in bigeneralized topological spaces and studied some characterizations of pairwise μ - $T_{\frac{1}{2}}$ spaces. Viriyapong and Boonpok [9] introduced and investigated the notion of generalized (Λ , p)-closed sets. Furthermore, some properties of generalized (Λ , α)-closed sets, generalized $\delta p(\Lambda, s)$ -closed sets, generalized (Λ , s)-closed sets and generalized (Λ , sp)-closed sets were studied in [1], [2], [3] and [4], respectively. In this paper, we introduce the notion of generalized (τ_1, τ_2)-closed sets. Moreover, we investigate some properties of generalized (τ_1, τ_2)-closed sets and generalized (τ_1, τ_2)-open sets.

2 Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [5] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [5] of A and is denoted by $\tau_1 \tau_2$ -Cl(A).

Lemma 2.1. [5] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A).$

3 Generalized (τ_1, τ_2) -closed sets in bitopological spaces

In this section, we introduce the notion of generalized (τ_1, τ_2) -closed sets. Moreover, we discuss some properties of generalized (τ_1, τ_2) -closed sets and generalized (τ_1, τ_2) -open sets.

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be generalized (τ_1, τ_2) -closed (briefly, g- (τ_1, τ_2) -closed) if $\tau_1 \tau_2$ -Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 \tau_2$ -open.

Theorem 3.2. Let (X, τ_1, τ_2) be a bitopological space and $A, B \subseteq X$. If A and B are $g_{-}(\tau_1, \tau_2)$ -closed sets, then $A \cup B$ is $g_{-}(\tau_1, \tau_2)$ -closed.

Proof. Let W be a $\tau_1\tau_2$ -open set and $A \cup B \subseteq W$. Then $A \subseteq W$ and $B \subseteq W$. Since A and B are g- (τ_1, τ_2) -closed, we have $\tau_1\tau_2$ -Cl $(A) \subseteq W$ and $\tau_1\tau_2$ -Cl $(B) \subseteq W$. Thus $\tau_1\tau_2$ -Cl $(A \cup B) = \tau_1\tau_2$ -Cl $(A) \cup \tau_1\tau_2$ -Cl $(B) \subseteq W$ and hence $A \cup B$ is g- (τ_1, τ_2) -closed.

Theorem 3.3. Let (X, τ_1, τ_2) be a bitopological space. If A is a g- (τ_1, τ_2) closed set and F is a $\tau_1\tau_2$ -closed set of X, then $A \cap F$ is g- (τ_1, τ_2) -closed.

Proof. Let V be a $\tau_1\tau_2$ -open set and $A \cap F \subseteq V$. Then $A \subseteq V \cup (X-F)$. Since A is g- (τ_1, τ_2) -closed and $V \cup (X-F)$ is $\tau_1\tau_2$ -open, $\tau_1\tau_2$ -Cl $(A) \subseteq V \cup (X-F)$. Thus $\tau_1\tau_2$ -Cl $(A \cap F) \subseteq \tau_1\tau_2$ -Cl $(A) \cap F \subseteq V$ and hence $A \cap F$ is g- (τ_1, τ_2) -closed.

Theorem 3.4. A subset A of a bitopological space (X, τ_1, τ_2) is $g_{-}(\tau_1, \tau_2)$ closed if and only if $\tau_1\tau_2$ -Cl(A) – A contains no nonempty $\tau_1\tau_2$ -closed set.

Proof. Let F be a $\tau_1\tau_2$ -closed subset of $\tau_1\tau_2$ -Cl(A) - A. Then $A \subseteq X - F$. Since X - F is $\tau_1\tau_2$ -open and A is g- (τ_1, τ_2) -closed, $\tau_1\tau_2$ -Cl $(A) \subseteq X - F$ and hence $F \subseteq X - \tau_1\tau_2$ -Cl(A). Thus $F \subseteq \tau_1\tau_2$ -Cl $(A) \cap [X - \tau_1\tau_2$ -Cl $(A)] = \emptyset$ and F is empty.

Conversely, suppose that $A \subseteq U$ and U is $\tau_1 \tau_2$ -open. If $\tau_1 \tau_2$ -Cl $(A) \not\subseteq U$, then $\tau_1 \tau_2$ -Cl $(A) \cap (X - U)$ is a nonempty $\tau_1 \tau_2$ -closed subset of

$$\tau_1 \tau_2$$
-Cl(A) – A.

Corollary 3.5. Let A be a g- (τ_1, τ_2) -closed set of a bitopological space (X, τ_1, τ_2) . Then A is $\tau_1\tau_2$ -closed if and only if $\tau_1\tau_2$ -Cl(A) – A is $\tau_1\tau_2$ -closed. *Proof.* If A is a $\tau_1 \tau_2$ -closed set, then $\tau_1 \tau_2$ -Cl(A) – A = \emptyset .

Conversely, suppose that $\tau_1\tau_2$ -Cl(A) – A is $\tau_1\tau_2$ -closed. Since A is g-(τ_1, τ_2)-closed and $\tau_1\tau_2$ -Cl(A) – A is a $\tau_1\tau_2$ -closed subset of itself, by Theorem 3.4, $\tau_1\tau_2$ -Cl(A) – $A = \emptyset$ and hence $\tau_1\tau_2$ -Cl(A) = A.

Theorem 3.6. A subset A of a bitopological space (X, τ_1, τ_2) is $g_{-}(\tau_1, \tau_2)$ closed if and only if $\tau_1\tau_2$ -Cl(A) $\cap F = \emptyset$, whenever $A \cap F = \emptyset$ and F is $\tau_1\tau_2$ -closed.

Proof. Suppose that A is a g- (τ_1, τ_2) -closed set. Let F be a $\tau_1\tau_2$ -closed set and $A \cap F = \emptyset$. Then $A \subseteq X - F$. Since A is g- (τ_1, τ_2) -closed and X - F is $\tau_1\tau_2$ -open, $\tau_1\tau_2$ -Cl $(A) \subseteq X - F$. Thus $\tau_1\tau_2$ -Cl $(A) \cap F = \emptyset$.

Conversely, let U be $\tau_1\tau_2$ -open and $A \subseteq U$. Then $A \cap (X - U) = \emptyset$ and X - U is $\tau_1\tau_2$ -closed. By the hypothesis, $\tau_1\tau_2$ -Cl $(A) \cap (X - U) = \emptyset$ and hence $\tau_1\tau_2$ -Cl $(A) \subseteq U$. Thus A is g- (τ_1, τ_2) -closed.

Theorem 3.7. A subset A of a bitopological space (X, τ_1, τ_2) is $g_{-}(\tau_1, \tau_2)$ closed if and only if $\tau_1\tau_2$ -Cl($\{x\}$) $\cap A \neq \emptyset$ for each $x \in \tau_1\tau_2$ -Cl(A).

Proof. Let A be $g_{-}(\tau_1, \tau_2)$ -closed and suppose that there exists $x \in \tau_1 \tau_2$ -Cl(A) such that $\tau_1 \tau_2$ -Cl($\{x\}$) $\cap A = \emptyset$. Thus $A \subseteq X - \tau_1 \tau_2$ -Cl($\{x\}$) and hence $\tau_1 \tau_2$ -Cl(A) $\subseteq X - \tau_1 \tau_2$ -Cl($\{x\}$). Therefore, $x \notin \tau_1 \tau_2$ -Cl(A), which is a contradiction.

Conversely, suppose that the condition of the theorem holds and let U be any $\tau_1\tau_2$ -open set containing A. Let $x \in \tau_1\tau_2$ -Cl(A). By the hypothesis, $\tau_1\tau_2$ -Cl($\{x\}$) $\cap A \neq \emptyset$ and so there exists $z \in \tau_1\tau_2$ -Cl($\{x\}$) $\cap A$. Hence $z \in A \subseteq U$. Thus $\{x\} \cap U \neq \emptyset$. Therefore, $x \in U$, which implies that $\tau_1\tau_2$ -Cl(A) $\subseteq U$. This shows that A is g-(τ_1, τ_2)-closed.

Definition 3.8. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. The (τ_1, τ_2) -frontier of A, (τ_1, τ_2) -fr(A), is defined as follows:

$$(\tau_1, \tau_2)$$
- $fr(A) = \tau_1 \tau_2$ - $Cl(A) \cap \tau_1 \tau_2$ - $Cl(X - A)$.

Theorem 3.9. Let (X, τ_1, τ_2) be a bitopological space and let A be a g- (τ_1, τ_2) -closed set of X. If U is $\tau_1 \tau_2$ -open in X and $A \subseteq U$, then (τ_1, τ_2) - $fr(U) \subseteq \tau_1 \tau_2$ -Int(X - A).

Proof. Let U be a $\tau_1\tau_2$ -open set and $A \subseteq U$. Then $\tau_1\tau_2$ -Cl $(A) \subseteq U$. Suppose that $x \in (\tau_1, \tau_2)$ -fr(U). Since U is $\tau_1\tau_2$ -open, (τ_1, τ_2) - $fr(U) = \tau_1\tau_2$ -Cl(U) - U. Therefore, $x \notin U$ and $x \notin \tau_1\tau_2$ -Cl(A). Thus $x \in \tau_1\tau_2$ -Int(X - A) and hence (τ_1, τ_2) - $fr(U) \subseteq \tau_1\tau_2$ -Int(X - A).

824

Generalized (τ_1, τ_2) -closed sets...

Definition 3.10. A subset A of a bitopological space (X, τ_1, τ_2) is said to be generalized (τ_1, τ_2) -open (briefly, g- (τ_1, τ_2) -open) if X - A is generalized (τ_1, τ_2) -closed.

Theorem 3.11. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then A is g- (τ_1, τ_2) -open if and only if $F \subseteq \tau_1 \tau_2$ -Int(A) whenever $F \subseteq A$ and F is $\tau_1 \tau_2$ -closed.

Proof. Suppose that A is a g- (τ_1, τ_2) -open set. Let F be a $\tau_1\tau_2$ -closed set and $F \subseteq A$. Then $X - A \subseteq X - F$. Since X - A is g- (τ_1, τ_2) -closed and X - F is $\tau_1\tau_2$ -open, $\tau_1\tau_2$ -Cl $(X - A) \subseteq X - F$. Thus $X - \tau_1\tau_2$ -Int(A) = $\tau_1\tau_2$ -Cl $(X - A) \subseteq X - F$ and hence $F \subseteq \tau_1\tau_2$ -Int(A).

Conversely, let $X - A \subseteq U$ and U be $\tau_1\tau_2$ -open. Then $X - U \subseteq A$. Since A is g- (τ_1, τ_2) -open and X - U is $\tau_1\tau_2$ -closed, $X - U \subseteq \tau_1\tau_2$ -Int(A). Therefore, $\tau_1\tau_2$ -Cl $(X - A) = X - \tau_1\tau_2$ -Int $(A) \subseteq U$. Thus X - A is g- (τ_1, τ_2) -closed and hence A is g- (τ_1, τ_2) -open.

Theorem 3.12. Let (X, τ_1, τ_2) be a bitopological space and $A, B \subseteq X$. If A and B are g- (τ_1, τ_2) -open sets such that $\tau_1 \tau_2$ - $Cl(B) \cap A = \emptyset$ and

$$\tau_1\tau_2\text{-}Cl(A)\cap B=\emptyset,$$

then $A \cup B$ is g- (τ_1, τ_2) -open.

Proof. Let F be a $\tau_1\tau_2$ -closed subset of $A \cup B$. Then $\tau_1\tau_2$ -Cl $(A) \cap F \subseteq A$ and hence, by Theorem 3.11, $\tau_1\tau_2$ -Cl $(A) \cap F \subseteq \tau_1\tau_2$ -Int(A). Similarly, we have $\tau_1\tau_2$ -Cl $(B) \cap F \subseteq \tau_1\tau_2$ -Int(B). Thus

$$F = (A \cup B) \cap F \subseteq (\tau_1 \tau_2 \operatorname{-Cl}(A)) \cup (\tau_1 \tau_2 \operatorname{-Cl}(B))$$
$$\subseteq \tau_1 \tau_2 \operatorname{-Int}(A) \cup \tau_1 \tau_2 \operatorname{-Int}(B) = \tau_1 \tau_2 \operatorname{-Int}(A \cup B).$$

By Theorem 3.11, $A \cup B$ is $g(\tau_1, \tau_2)$ -open.

Theorem 3.13. Let (X, τ_1, τ_2) be a bitopological space. For each $x \in X$, $\{x\}$ is either $\tau_1\tau_2$ -closed or g- (τ_1, τ_2) -open.

Proof. Suppose that $\{x\}$ is not $\tau_1\tau_2$ -closed. Then $X - \{x\}$ is not $\tau_1\tau_2$ -open and the only $\tau_1\tau_2$ -open set containing $X - \{x\}$ is X itself. Thus $\tau_1\tau_2$ -Cl $(X - \{x\}) \subseteq X$ and hence $X - \{x\}$ is $g \cdot (\tau_1, \tau_2)$ -closed. This shows that $\{x\}$ is $g \cdot (\tau_1, \tau_2)$ -open.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, M. Thongmoon, Some properties of generalized (Λ, α) closed sets, Int. J. Anal. Appl., **21**, (2023), 88.
- [2] C. Boonpok, N. Srisarakham, Properties of generalized $\delta p(\Lambda, s)$ -closed sets, Eur. J. Pure Appl. Math., **16**, no. 4, (2023), 2581–2596.
- [3] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [4] C. Boonpok, C. Viriyapong, On generalized (Λ, sp) -closed sets, Eur. J. Pure Appl. Math., **15**, no. 4, (2022), 2127–2140.
- [5] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18z**, (2018), 282–293.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, (1970), 89–96.
- [7] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized closed sets in bigeneralized topological spaces, Int. J. Math. Anal., 5, no. 24, (2011), 1175–1184.
- [8] W. Dunham, N. Levine, Further results on generalized closed sets, Kyungpook Math. J., 20, (1980), 169–175.
- [9] C. Viriyapong, C. Boonpok, On generalized (Λ, p) -closed sets, Int. J. Math. Comput. Sci., **18**, no. 1, (2023), 79–83.