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Abstract

In this paper, we deal with the notion of generalized (τ1, τ2)-closed
sets. First, we introduce the notion of generalized (τ1, τ2)-closed sets.
Next, we study some properties of generalized (τ1, τ2)-closed sets. Fi-
nally, we investigate some properties of generalized (τ1, τ2)-open sets.

1 Introduction

Levine [6] introduced the notion of generalized closed sets in topological
spaces and defined the notion of a T 1

2

-space to be one in which the closed

sets and the generalized closed sets coincide. Dunham and Levine [8] studied
further properties of generalized closed sets. The notion of generalized closed
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sets has been modified and studied by using weaker forms of open sets such
as semi-open sets, preopen sets, α-open sets and β-open sets. Dungthaisong
et al. [7] investigated the notion of generalized closed sets in bigeneral-
ized topological spaces and studied some characterizations of pairwise µ-T 1

2

spaces. Viriyapong and Boonpok [9] introduced and investigated the notion
of generalized (Λ, p)-closed sets. Furthermore, some properties of generalized
(Λ, α)-closed sets, generalized δp(Λ, s)-closed sets, generalized (Λ, s)-closed
sets and generalized (Λ, sp)-closed sets were studied in [1], [2], [3] and [4], re-
spectively. In this paper, we introduce the notion of generalized (τ1, τ2)-closed
sets. Moreover, we investigate some properties of generalized (τ1, τ2)-closed
sets and generalized (τ1, τ2)-open sets.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [5] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [5] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [5] of A and is denoted by τ1τ2-Int(A).

Lemma 2.1. [5] Let A and B be subsets of a bitopological space (X, τ1, τ2).
For the τ1τ2-closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).
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3 Generalized (τ1, τ2)-closed sets in bitopolog-

ical spaces

In this section, we introduce the notion of generalized (τ1, τ2)-closed sets.
Moreover, we discuss some properties of generalized (τ1, τ2)-closed sets and
generalized (τ1, τ2)-open sets.

Definition 3.1. A subset A of a bitopological space (X, τ1, τ2) is said to be
generalized (τ1, τ2)-closed (briefly, g-(τ1, τ2)-closed) if τ1τ2-Cl(A) ⊆ U when-
ever A ⊆ U and U is τ1τ2-open.

Theorem 3.2. Let (X, τ1, τ2) be a bitopological space and A,B ⊆ X. If A
and B are g-(τ1, τ2)-closed sets, then A ∪B is g-(τ1, τ2)-closed.

Proof. Let W be a τ1τ2-open set and A ∪ B ⊆ W . Then A ⊆ W and
B ⊆ W . Since A and B are g-(τ1, τ2)-closed, we have τ1τ2-Cl(A) ⊆ W and
τ1τ2-Cl(B) ⊆ W . Thus τ1τ2-Cl(A ∪ B) = τ1τ2-Cl(A) ∪ τ1τ2-Cl(B) ⊆ W and
hence A ∪ B is g-(τ1, τ2)-closed.

Theorem 3.3. Let (X, τ1, τ2) be a bitopological space. If A is a g-(τ1, τ2)-
closed set and F is a τ1τ2-closed set of X, then A ∩ F is g-(τ1, τ2)-closed.

Proof. Let V be a τ1τ2-open set and A∩F ⊆ V . Then A ⊆ V ∪(X−F ). Since
A is g-(τ1, τ2)-closed and V ∪(X−F ) is τ1τ2-open, τ1τ2-Cl(A) ⊆ V ∪(X−F ).
Thus τ1τ2-Cl(A ∩ F ) ⊆ τ1τ2-Cl(A) ∩ F ⊆ V and hence A ∩ F is g-(τ1, τ2)-
closed.

Theorem 3.4. A subset A of a bitopological space (X, τ1, τ2) is g-(τ1, τ2)-
closed if and only if τ1τ2-Cl(A)−A contains no nonempty τ1τ2-closed set.

Proof. Let F be a τ1τ2-closed subset of τ1τ2-Cl(A) − A. Then A ⊆ X − F .
Since X − F is τ1τ2-open and A is g-(τ1, τ2)-closed, τ1τ2-Cl(A) ⊆ X −F and
hence F ⊆ X− τ1τ2-Cl(A). Thus F ⊆ τ1τ2-Cl(A)∩ [X − τ1τ2-Cl(A)] = ∅ and
F is empty.

Conversely, suppose that A ⊆ U and U is τ1τ2-open. If τ1τ2-Cl(A) * U ,
then τ1τ2-Cl(A) ∩ (X − U) is a nonempty τ1τ2-closed subset of

τ1τ2-Cl(A)−A.

Corollary 3.5. Let A be a g-(τ1, τ2)-closed set of a bitopological space (X, τ1, τ2).
Then A is τ1τ2-closed if and only if τ1τ2-Cl(A)−A is τ1τ2-closed.
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Proof. If A is a τ1τ2-closed set, then τ1τ2-Cl(A)− A = ∅.
Conversely, suppose that τ1τ2-Cl(A) − A is τ1τ2-closed. Since A is g-

(τ1, τ2)-closed and τ1τ2-Cl(A)−A is a τ1τ2-closed subset of itself, by Theorem
3.4, τ1τ2-Cl(A)−A = ∅ and hence τ1τ2-Cl(A) = A.

Theorem 3.6. A subset A of a bitopological space (X, τ1, τ2) is g-(τ1, τ2)-
closed if and only if τ1τ2-Cl(A) ∩ F = ∅, whenever A ∩ F = ∅ and F is
τ1τ2-closed.

Proof. Suppose that A is a g-(τ1, τ2)-closed set. Let F be a τ1τ2-closed set
and A ∩ F = ∅. Then A ⊆ X − F . Since A is g-(τ1, τ2)-closed and X − F is
τ1τ2-open, τ1τ2-Cl(A) ⊆ X − F . Thus τ1τ2-Cl(A) ∩ F = ∅.

Conversely, let U be τ1τ2-open and A ⊆ U . Then A ∩ (X − U) = ∅ and
X−U is τ1τ2-closed. By the hypothesis, τ1τ2-Cl(A)∩ (X−U) = ∅ and hence
τ1τ2-Cl(A) ⊆ U . Thus A is g-(τ1, τ2)-closed.

Theorem 3.7. A subset A of a bitopological space (X, τ1, τ2) is g-(τ1, τ2)-
closed if and only if τ1τ2-Cl({x}) ∩ A 6= ∅ for each x ∈ τ1τ2-Cl(A).

Proof. Let A be g-(τ1, τ2)-closed and suppose that there exists x ∈ τ1τ2-Cl(A)
such that τ1τ2-Cl({x}) ∩ A = ∅. Thus A ⊆ X − τ1τ2-Cl({x}) and hence
τ1τ2-Cl(A) ⊆ X − τ1τ2-Cl({x}). Therefore, x 6∈ τ1τ2-Cl(A), which is a con-
tradiction.

Conversely, suppose that the condition of the theorem holds and let U

be any τ1τ2-open set containing A. Let x ∈ τ1τ2-Cl(A). By the hypothesis,
τ1τ2-Cl({x})∩A 6= ∅ and so there exists z ∈ τ1τ2-Cl({x})∩A. Hence z ∈ A ⊆
U . Thus {x}∩U 6= ∅. Therefore, x ∈ U , which implies that τ1τ2-Cl(A) ⊆ U .
This shows that A is g-(τ1, τ2)-closed.

Definition 3.8. Let (X, τ1, τ2) be a bitopological space and A ⊆ X. The
(τ1, τ2)-frontier of A, (τ1, τ2)-fr(A), is defined as follows:

(τ1, τ2)-fr(A) = τ1τ2-Cl(A) ∩ τ1τ2-Cl(X − A).

Theorem 3.9. Let (X, τ1, τ2) be a bitopological space and let A be a g-
(τ1, τ2)-closed set ofX. If U is τ1τ2-open inX and A ⊆ U , then (τ1, τ2)-fr(U) ⊆
τ1τ2-Int(X −A).

Proof. Let U be a τ1τ2-open set and A ⊆ U . Then τ1τ2-Cl(A) ⊆ U . Suppose
that x ∈ (τ1, τ2)-fr(U). Since U is τ1τ2-open, (τ1, τ2)-fr(U) = τ1τ2-Cl(U)−U .
Therefore, x 6∈ U and x 6∈ τ1τ2-Cl(A). Thus x ∈ τ1τ2-Int(X − A) and hence
(τ1, τ2)-fr(U) ⊆ τ1τ2-Int(X −A).
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Definition 3.10. A subset A of a bitopological space (X, τ1, τ2) is said to
be generalized (τ1, τ2)-open (briefly, g-(τ1, τ2)-open) if X − A is generalized
(τ1, τ2)-closed.

Theorem 3.11. Let (X, τ1, τ2) be a bitopological space and A ⊆ X. Then A

is g-(τ1, τ2)-open if and only if F ⊆ τ1τ2-Int(A) whenever F ⊆ A and F is
τ1τ2-closed.

Proof. Suppose that A is a g-(τ1, τ2)-open set. Let F be a τ1τ2-closed set
and F ⊆ A. Then X − A ⊆ X − F . Since X − A is g-(τ1, τ2)-closed and
X − F is τ1τ2-open, τ1τ2-Cl(X − A) ⊆ X − F . Thus X − τ1τ2-Int(A) =
τ1τ2-Cl(X −A) ⊆ X − F and hence F ⊆ τ1τ2-Int(A).

Conversely, let X −A ⊆ U and U be τ1τ2-open. Then X −U ⊆ A. Since
A is g-(τ1, τ2)-open and X−U is τ1τ2-closed, X−U ⊆ τ1τ2-Int(A). Therefore,
τ1τ2-Cl(X −A) = X − τ1τ2-Int(A) ⊆ U . Thus X −A is g-(τ1, τ2)-closed and
hence A is g-(τ1, τ2)-open.

Theorem 3.12. Let (X, τ1, τ2) be a bitopological space and A,B ⊆ X. If A
and B are g-(τ1, τ2)-open sets such that τ1τ2-Cl(B) ∩ A = ∅ and

τ1τ2-Cl(A) ∩ B = ∅,

then A ∪ B is g-(τ1, τ2)-open.

Proof. Let F be a τ1τ2-closed subset of A∪B. Then τ1τ2-Cl(A)∩F ⊆ A and
hence, by Theorem 3.11, τ1τ2-Cl(A) ∩ F ⊆ τ1τ2-Int(A). Similarly, we have
τ1τ2-Cl(B) ∩ F ⊆ τ1τ2-Int(B). Thus

F = (A ∪B) ∩ F ⊆ (τ1τ2-Cl(A)) ∪ (τ1τ2-Cl(B))

⊆ τ1τ2-Int(A) ∪ τ1τ2-Int(B) = τ1τ2-Int(A ∪B).

By Theorem 3.11, A ∪ B is g-(τ1, τ2)-open.

Theorem 3.13. Let (X, τ1, τ2) be a bitopological space. For each x ∈ X,
{x} is either τ1τ2-closed or g-(τ1, τ2)-open.

Proof. Suppose that {x} is not τ1τ2-closed. ThenX−{x} is not τ1τ2-open and
the only τ1τ2-open set containingX−{x} isX itself. Thus τ1τ2-Cl(X−{x}) ⊆
X and hence X − {x} is g-(τ1, τ2)-closed. This shows that {x} is g-(τ1, τ2)-
open.
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