International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 855–860

(au_1, au_2) -extremal disconnectedness in bitopological spaces

Nongluk Viriyapong¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: nongluk.h@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received December 12, 2023, Accepted February 2, 2024, Published February 12, 2024)

Abstract

In this paper, we introduce the notion of (τ_1, τ_2) -extremally disconnected spaces. Moreover, we establish some characterizations of (τ_1, τ_2) -extremally disconnected spaces.

1 Introduction

The notion of extremally disconnected spaces was introduced by Stone [9]. A topological space X is called extremally disconnected if the closure of every open set of X is open or equivalently if the interior of every closed set of X is closed. Extremally disconnected spaces play a prominent role in set-theoretical topology, in the theory of Boolean algebras, and in some

Key words and phrases: $\tau_1 \tau_2$ -open set, (τ_1, τ_2) -extremally disconnected space.

AMS (MOS) Subject Classifications: 54A05, 54E55, 54G05. The corresponding author is Nongluk Viriyapong. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net branches of functional analysis. Sivaraj [8] obtained some characterizations of extremally disconnected spaces by utilizing smi-open sets. Noiri [7] investigated several characterizations of extremally disconnected spaces by utilizing preopen sets and semi-preopen sets. Ekici and Noiri [5] introduced and studied the notion of \star -extremally disconnected ideal topological spaces. Furthermore, Ekici and Noiri [5] showed that \star -extremally disconnectedness and extremally disconnectedness are equivalent for a codense ideal. Viriyapong and Boonpok [10] introduced and studied the notion of (Λ, p) -extremal disconnectedness in topological spaces. Moreover, Kong-ied and Boonpok [6] investigated some characterizations of (Λ, p) -extremally disconnected spaces. Several characterizations of (Λ, s) -extremally disconnected spaces and Λ_{sp} extremally disconnected spaces were established in [1] and [2], respectively. In this paper, we introduce the notion of (τ_1, τ_2) -extremally disconnected spaces. In particular, we investigate some characterizations of (τ_1, τ_2) -extremally disconnected spaces.

2 Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [4] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [4] of A and is denoted by $\tau_1 \tau_2$ -Cl(A).

Lemma 2.1. [4] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A).$

 (τ_1, τ_2) -extremal disconnected...

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)s$ -open [3] (resp. $(\tau_1, \tau_2)p$ -open [3], $(\tau_1, \tau_2)\beta$ -open [3]) if $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)) (resp. $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). A subset A of a bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)r$ -open [11] (resp. $(\tau_1, \tau_2)r$ -closed) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A = \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))).

3 On (τ_1, τ_2) -extremally disconnected spaces

In this section, we introduce the notion of (τ_1, τ_2) -extremally disconnected spaces. Moreover, we discuss several characterizations of (τ_1, τ_2) -extremally disconnected spaces.

Definition 3.1. A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -extremally disconnected if the $\tau_1\tau_2$ -closure of every $\tau_1\tau_2$ -open set U of X is $\tau_1\tau_2$ -open.

Theorem 3.2. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.
- (2) $\tau_1\tau_2$ -Int(F) is $\tau_1\tau_2$ -closed for every $\tau_1\tau_2$ -closed set F of X.
- (3) $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Int(A)) \subseteq \tau_1 \tau_2 Int(\tau_1 \tau_2 Cl(A))$ for every subset A of X.
- (4) Every (τ_1, τ_2) s-open set of X is (τ_1, τ_2) p-open.
- (5) The $\tau_1\tau_2$ -closure of every $(\tau_1, \tau_2)\beta$ -open set of X is $\tau_1\tau_2$ -open.
- (6) Every $(\tau_1, \tau_2)\beta$ -open set of X is $(\tau_1, \tau_2)p$ -open.
- (7) For every subset A of X, A is $\alpha(\tau_1, \tau_2)$ -open if and only if it is (τ_1, τ_2) s-open.

Proof. (1) \Rightarrow (2): Let F be a $\tau_1\tau_2$ -closed set. Then X - F is $\tau_1\tau_2$ -open and by (1), $\tau_1\tau_2$ -Cl $(X - F) = X - \tau_1\tau_2$ -Int(F) is $\tau_1\tau_2$ -open. Thus $\tau_1\tau_2$ -Int(F) is $\tau_1\tau_2$ -closed.

(2) \Rightarrow (3): Let A be any subset of X. Then $X - \tau_1 \tau_2$ -Int(A) is $\tau_1 \tau_2$ -closed and by (2), $\tau_1 \tau_2$ -Int($X - \tau_1 \tau_2$ -Int(A)) is $\tau_1 \tau_2$ -closed. Thus $\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)) is $\tau_1 \tau_2$ -open and hence $\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)) $\subseteq \tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A)). $(3) \Rightarrow (4)$: Let U be a (τ_1, τ_2) s-open set. By (3), we have

$$U \subseteq \tau_1 \tau_2 \operatorname{-Cl}(\tau_1 \tau_2 \operatorname{-Int}(U)) \subseteq \tau_1 \tau_2 \operatorname{-Int}(\tau_1 \tau_2 \operatorname{-Cl}(U)).$$

Thus U is $(\tau_1, \tau_2)p$ -open.

(4) \Rightarrow (5): Let U be a $(\tau_1, \tau_2)\beta$ -open set. Then $\tau_1\tau_2$ -Cl(U) is $(\tau_1, \tau_2)s$ -open and by (4), $\tau_1\tau_2$ -Cl(U) is $(\tau_1, \tau_2)p$ -open. Thus

$$\tau_1 \tau_2$$
-Cl $(U) \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl $(U))$

and hence $\tau_1 \tau_2$ -Cl(U) is $\tau_1 \tau_2$ -open.

 $(5) \Rightarrow (6)$: Let U be a $(\tau_1, \tau_2)\beta$ -open set. Then by (5),

$$\tau_1 \tau_2 \text{-} \operatorname{Cl}(U) = \tau_1 \tau_2 \text{-} \operatorname{Int}(\tau_1 \tau_2 \text{-} \operatorname{Cl}(U)).$$

Thus $U \subseteq \tau_1 \tau_2$ -Cl $(U) = \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(U)) and hence U is $(\tau_1, \tau_2)p$ -open.

(6) \Rightarrow (7): Let U be a $(\tau_1, \tau_2)s$ -open set. Since a $(\tau_1, \tau_2)s$ -open set is $(\tau_1, \tau_2)\beta$ -open, thus by (6) it is $(\tau_1, \tau_2)p$ -open. Since U is $(\tau_1, \tau_2)s$ -open and $(\tau_1, \tau_2)p$ -open, U is $\alpha(\tau_1, \tau_2)$ -open.

(7) \Rightarrow (1): Let U be a $\tau_1 \tau_2$ -open set. Then $\tau_1 \tau_2$ -Cl(U) is $(\tau_1, \tau_2)s$ -open and by (7), $\tau_1 \tau_2$ -Cl(U) is $\alpha(\tau_1, \tau_2)$ -open. Thus

$$\tau_1\tau_2\operatorname{-Cl}(U) \subseteq \tau_1\tau_2\operatorname{-Int}(\tau_1\tau_2\operatorname{-Cl}(\tau_1\tau_2\operatorname{-Int}(\tau_1\tau_2\operatorname{-Cl}(U)))) = \tau_1\tau_2\operatorname{-Int}(\tau_1\tau_2\operatorname{-Cl}(U))$$

and hence $\tau_1\tau_2$ -Cl(U) = $\tau_1\tau_2$ -Int($\tau_1\tau_2$ -Cl(U)). Therefore, $\tau_1\tau_2$ -Cl(U) is $\tau_1\tau_2$ open. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.

Theorem 3.3. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.
- (2) $\tau_1\tau_2$ - $Cl(U) \cap \tau_1\tau_2$ - $Cl(V) = \emptyset$ for every $\tau_1\tau_2$ -open sets U and V with $U \cap V = \emptyset$;
- (3) $\tau_1\tau_2$ - $Cl(U) \cap \tau_1\tau_2$ - $Cl(V) \subseteq \tau_1\tau_2$ - $Cl(U \cap V)$ for every $\tau_1\tau_2$ -open sets U and V;
- (4) $\tau_1\tau_2$ - $Cl(\tau_1\tau_2$ - $Int(\tau_1\tau_2$ - $Cl(A))) \cap \tau_1\tau_2$ - $Cl(U) = \emptyset$ for every subset $A \subseteq X$ and every $\tau_1\tau_2$ -open set U with $A \cap U = \emptyset$.

Proof. (1) \Rightarrow (3): Let U and V be $\tau_1\tau_2$ -open. Since $\tau_1\tau_2$ -Cl(U) and V are $\tau_1\tau_2$ -open,

$$\tau_1 \tau_2 \operatorname{-Cl}(U) \cap \tau_1 \tau_2 \operatorname{-Cl}(V) \subseteq \tau_1 \tau_2 \operatorname{-Cl}(\tau_1 \tau_2 \operatorname{-Cl}(U) \cap V)$$
$$\subseteq \tau_1 \tau_2 \operatorname{-Cl}(\tau_1 \tau_2 \operatorname{-Cl}(U \cap V)) \subseteq \tau_1 \tau_2 \operatorname{-Cl}(U \cap V).$$

Thus $\tau_1 \tau_2$ -Cl $(U) \cap \tau_1 \tau_2$ -Cl $(V) \subseteq \tau_1 \tau_2$ -Cl $(U \cap V)$.

(3) \Rightarrow (2): Let U and V be $\tau_1\tau_2$ -open with $U \cap V = \emptyset$. By (3), we have $\tau_1\tau_2$ -Cl(U) $\cap \tau_1\tau_2$ -Cl(V) $\subseteq \tau_1\tau_2$ -Cl(U $\cap V$) $\subseteq \tau_1\tau_2$ -Cl(\emptyset) = \emptyset . Thus

$$\tau_1 \tau_2$$
-Cl $(U) \cap \tau_1 \tau_2$ -Cl $(V) = \emptyset$

(2) \Rightarrow (4): Let $A \subseteq X$ and U be a $\tau_1 \tau_2$ -open set with $A \cap U = \emptyset$. Since $\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) is $\tau_1 \tau_2$ -open and $\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl $(A)) \cap U = \emptyset$, by (2), $\tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Cl $(A))) \cap \tau_1 \tau_2$ -Cl $(U) = \emptyset$.

(4) \Rightarrow (2): Let U and V be $\tau_1\tau_2$ -open with $U \cap V = \emptyset$. By (4), we have $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(U))) \cap \tau_1\tau_2$ -Cl $(V) = \emptyset$. Since $\tau_1\tau_2$ -Cl $(U) \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(U))), \tau_1\tau_2$ -Cl $(U) \cap \tau_1\tau_2$ -Cl $(V) = \emptyset$.

(2) \Rightarrow (1): Let U be a $\tau_1\tau_2$ -open set. Since U and $X - \tau_1\tau_2$ -Cl(U) are disjoint $\tau_1\tau_2$ -open sets. Then $\tau_1\tau_2$ -Cl(U) $\cap \tau_1\tau_2$ -Cl($X - \tau_1\tau_2$ -Cl(U)) = \emptyset . This implies that $\tau_1\tau_2$ -Cl(U) $\subseteq \tau_1\tau_2$ -Int($\tau_1\tau_2$ -Cl(U)). Thus $\tau_1\tau_2$ -Cl(U) is $\tau_1\tau_2$ -open and hence (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.

Theorem 3.4. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.
- (2) Every (τ_1, τ_2) r-open set of X is $\tau_1 \tau_2$ -closed.
- (3) Every (τ_1, τ_2) r-closed set of X is $\tau_1 \tau_2$ -open.

Proof. (1) \Rightarrow (2): Let U be a $(\tau_1, \tau_2)r$ -open set of X. Since U is $\tau_1\tau_2$ -open, by (1), $\tau_1\tau_2$ -Cl(U) is $\tau_1\tau_2$ -open. Thus $U = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(U)) = $\tau_1\tau_2$ -Cl(U) and hence U is $\tau_1\tau_2$ -closed.

(2) \Rightarrow (1): Let U be a $\tau_1\tau_2$ -open set of X. Since $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(U)) is $(\tau_1, \tau_2)r$ -open and by (2), $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(U)) is $\tau_1\tau_2$ -closed. Thus

$$\tau_1\tau_2\operatorname{-Cl}(U) \subseteq \tau_1\tau_2\operatorname{-Cl}(\tau_1\tau_2\operatorname{-Int}(\tau_1\tau_2\operatorname{-Cl}(U))) = \tau_1\tau_2\operatorname{-Int}(\tau_1\tau_2\operatorname{-Cl}(U))$$

and hence $\tau_1 \tau_2$ -Cl(U) is $\tau_1 \tau_2$ -open. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.

 $(2) \Leftrightarrow (3)$: Obvious.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [2] C. Boonpok, J. Khampakdee, (Λ, sp) -open sets in topological spaces, Eur. J. Pure Appl. Math., **15**, no. 2, (2022), 572–588.
- [3] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, **6**, (2020), e05367.
- [4] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [5] E. Ekici, T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., **122**, nos. 1-2, (2009), 81–90.
- [6] B. Kong-ied, C. Boonpok, Characterizations of (Λ, p)-extremally disconnected spaces, Int. J. Math. Comput. Sci., 18, no. 3, (2023), 393–397.
- [7] T. Noiri, Characterizations of extremally disconnected spaces, Indian J. Pure Appl. Math., 19, no. 4, (1988), 325–329.
- [8] D. Sivaraj, A note on extremally disconnected spaces, Indian J. Pure Appl. Math., 17, (1986), 1373–1375.
- [9] M. H. Stone, Algebraic characterizations of special Boolean rings, Fund. Math., 29, (1937), 223–302.
- [10] N. Viriyapong, C. Boonpok, On (Λ, p) -extremally disconnected spaces, Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 289–293.
- [11] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.