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Abstract

In this paper, we introduce the notion of (τ1, τ2)-extremally dis-
connected spaces. Moreover, we establish some characterizations of
(τ1, τ2)-extremally disconnected spaces.

1 Introduction

The notion of extremally disconnected spaces was introduced by Stone [9].
A topological space X is called extremally disconnected if the closure of
every open set of X is open or equivalently if the interior of every closed
set of X is closed. Extremally disconnected spaces play a prominent role
in set-theoretical topology, in the theory of Boolean algebras, and in some
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branches of functional analysis. Sivaraj [8] obtained some characterizations
of extremally disconnected spaces by utilizing smi-open sets. Noiri [7] inves-
tigated several characterizations of extremally disconnected spaces by utiliz-
ing preopen sets and semi-preopen sets. Ekici and Noiri [5] introduced and
studied the notion of ⋆-extremally disconnected ideal topological spaces. Fur-
thermore, Ekici and Noiri [5] showed that ⋆-extremally disconnectedness and
extremally disconnectedness are equivalent for a codense ideal. Viriyapong
and Boonpok [10] introduced and studied the notion of (Λ, p)-extremal dis-
connectedness in topological spaces. Moreover, Kong-ied and Boonpok [6]
investigated some characterizations of (Λ, p)-extremally disconnected spaces.
Several characterizations of (Λ, s)-extremally disconnected spaces and Λsp-
extremally disconnected spaces were established in [1] and [2], respectively. In
this paper, we introduce the notion of (τ1, τ2)-extremally disconnected spaces.
In particular, we investigate some characterizations of (τ1, τ2)-extremally dis-
connected spaces.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [4] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [4] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [4] of A and is denoted by τ1τ2-Int(A).

Lemma 2.1. [4] Let A and B be subsets of a bitopological space (X, τ1, τ2).
For the τ1τ2-closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).



(τ1, τ2)-extremal disconnected... 857

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)s-open
[3] (resp. (τ1, τ2)p-open [3], (τ1, τ2)β-open [3]) if A ⊆ τ1τ2-Cl(τ1τ2-Int(A))
(resp. A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). A sub-
set A of a bitopological space (X, τ1, τ2) is called (τ1, τ2)r-open [11] (resp.
(τ1, τ2)r-closed) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A = τ1τ2-Cl(τ1τ2-Int(A))).
A subset A of a bitopological space (X, τ1, τ2) is said to be α(τ1, τ2)-open if
A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))).

3 On (τ1, τ2)-extremally disconnected spaces

In this section, we introduce the notion of (τ1, τ2)-extremally disconnected
spaces. Moreover, we discuss several characterizations of (τ1, τ2)-extremally
disconnected spaces.

Definition 3.1. A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-extremally
disconnected if the τ1τ2-closure of every τ1τ2-open set U of X is τ1τ2-open.

Theorem 3.2. For a bitopological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-extremally disconnected.

(2) τ1τ2-Int(F ) is τ1τ2-closed for every τ1τ2-closed set F of X.

(3) τ1τ2-Cl(τ1τ2-Int(A)) ⊆ τ1τ2-Int(τ1τ2-Cl(A)) for every subset A of X.

(4) Every (τ1, τ2)s-open set of X is (τ1, τ2)p-open.

(5) The τ1τ2-closure of every (τ1, τ2)β-open set of X is τ1τ2-open.

(6) Every (τ1, τ2)β-open set of X is (τ1, τ2)p-open.

(7) For every subset A of X, A is α(τ1, τ2)-open if and only if it is (τ1, τ2)s-
open.

Proof. (1) ⇒ (2): Let F be a τ1τ2-closed set. Then X − F is τ1τ2-open and
by (1), τ1τ2-Cl(X − F ) = X − τ1τ2-Int(F ) is τ1τ2-open. Thus τ1τ2-Int(F ) is
τ1τ2-closed.

(2) ⇒ (3): Let A be any subset of X . Then X−τ1τ2-Int(A) is τ1τ2-closed
and by (2), τ1τ2-Int(X−τ1τ2-Int(A)) is τ1τ2-closed. Thus τ1τ2-Cl(τ1τ2-Int(A))
is τ1τ2-open and hence τ1τ2-Cl(τ1τ2-Int(A)) ⊆ τ1τ2-Int(τ1τ2-Cl(A)).
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(3) ⇒ (4): Let U be a (τ1, τ2)s-open set. By (3), we have

U ⊆ τ1τ2-Cl(τ1τ2-Int(U)) ⊆ τ1τ2-Int(τ1τ2-Cl(U)).

Thus U is (τ1, τ2)p-open.

(4) ⇒ (5): Let U be a (τ1, τ2)β-open set. Then τ1τ2-Cl(U) is (τ1, τ2)s-open
and by (4), τ1τ2-Cl(U) is (τ1, τ2)p-open. Thus

τ1τ2-Cl(U) ⊆ τ1τ2-Int(τ1τ2-Cl(U))

and hence τ1τ2-Cl(U) is τ1τ2-open.

(5) ⇒ (6): Let U be a (τ1, τ2)β-open set. Then by (5),

τ1τ2-Cl(U) = τ1τ2-Int(τ1τ2-Cl(U)).

Thus U ⊆ τ1τ2-Cl(U) = τ1τ2-Int(τ1τ2-Cl(U)) and hence U is (τ1, τ2)p-open.

(6) ⇒ (7): Let U be a (τ1, τ2)s-open set. Since a (τ1, τ2)s-open set is
(τ1, τ2)β-open, thus by (6) it is (τ1, τ2)p-open. Since U is (τ1, τ2)s-open and
(τ1, τ2)p-open, U is α(τ1, τ2)-open.

(7) ⇒ (1): Let U be a τ1τ2-open set. Then τ1τ2-Cl(U) is (τ1, τ2)s-open
and by (7), τ1τ2-Cl(U) is α(τ1, τ2)-open. Thus

τ1τ2-Cl(U) ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(U)))) = τ1τ2-Int(τ1τ2-Cl(U))

and hence τ1τ2-Cl(U) = τ1τ2-Int(τ1τ2-Cl(U)). Therefore, τ1τ2-Cl(U) is τ1τ2-
open. This shows that (X, τ1, τ2) is (τ1, τ2)-extremally disconnected.

Theorem 3.3. For a bitopological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-extremally disconnected.

(2) τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) = ∅ for every τ1τ2-open sets U and V with
U ∩ V = ∅;

(3) τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) ⊆ τ1τ2-Cl(U ∩ V ) for every τ1τ2-open sets U

and V ;

(4) τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))) ∩ τ1τ2-Cl(U) = ∅ for every subset A ⊆ X

and every τ1τ2-open set U with A ∩ U = ∅.
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Proof. (1) ⇒ (3): Let U and V be τ1τ2-open. Since τ1τ2-Cl(U) and V are
τ1τ2-open,

τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) ⊆ τ1τ2-Cl(τ1τ2-Cl(U) ∩ V )

⊆ τ1τ2-Cl(τ1τ2-Cl(U ∩ V )) ⊆ τ1τ2-Cl(U ∩ V ).

Thus τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) ⊆ τ1τ2-Cl(U ∩ V ).
(3) ⇒ (2): Let U and V be τ1τ2-open with U ∩ V = ∅. By (3), we have

τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) ⊆ τ1τ2-Cl(U ∩ V ) ⊆ τ1τ2-Cl(∅) = ∅. Thus

τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) = ∅.

(2) ⇒ (4): Let A ⊆ X and U be a τ1τ2-open set with A ∩ U = ∅. Since
τ1τ2-Int(τ1τ2-Cl(A)) is τ1τ2-open and τ1τ2-Int(τ1τ2-Cl(A)) ∩ U = ∅, by (2),
τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))) ∩ τ1τ2-Cl(U) = ∅.

(4) ⇒ (2): Let U and V be τ1τ2-open with U ∩ V = ∅. By (4), we
have τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(U))) ∩ τ1τ2-Cl(V ) = ∅. Since τ1τ2-Cl(U) ⊆

τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(U))), τ1τ2-Cl(U) ∩ τ1τ2-Cl(V ) = ∅.
(2) ⇒ (1): Let U be a τ1τ2-open set. Since U and X − τ1τ2-Cl(U) are

disjoint τ1τ2-open sets. Then τ1τ2-Cl(U)∩ τ1τ2-Cl(X− τ1τ2-Cl(U)) = ∅. This
implies that τ1τ2-Cl(U) ⊆ τ1τ2-Int(τ1τ2-Cl(U)). Thus τ1τ2-Cl(U) is τ1τ2-open
and hence (X, τ1, τ2) is (τ1, τ2)-extremally disconnected.

Theorem 3.4. For a bitopological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-extremally disconnected.

(2) Every (τ1, τ2)r-open set of X is τ1τ2-closed.

(3) Every (τ1, τ2)r-closed set of X is τ1τ2-open.

Proof. (1) ⇒ (2): Let U be a (τ1, τ2)r-open set of X . Since U is τ1τ2-open,
by (1), τ1τ2-Cl(U) is τ1τ2-open. Thus U = τ1τ2-Int(τ1τ2-Cl(U)) = τ1τ2-Cl(U)
and hence U is τ1τ2-closed.

(2) ⇒ (1): Let U be a τ1τ2-open set of X . Since τ1τ2-Int(τ1τ2-Cl(U)) is
(τ1, τ2)r-open and by (2), τ1τ2-Int(τ1τ2-Cl(U)) is τ1τ2-closed. Thus

τ1τ2-Cl(U) ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(U))) = τ1τ2-Int(τ1τ2-Cl(U))

and hence τ1τ2-Cl(U) is τ1τ2-open. This shows that (X, τ1, τ2) is (τ1, τ2)-
extremally disconnected.

(2) ⇔ (3): Obvious.
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