International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 869–873

On some characterizations of (τ_1, τ_2) - $T_{\frac{1}{2}}$ -spaces

Butsakorn Kong-ied¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: butsakorn.k@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received November 22, 2023, Accepted February 2, 2024, Published February 12, 2024)

Abstract

In this paper, we introduce the notion of (τ_1, τ_2) - $T_{\frac{1}{2}}$ -spaces. We also investigate some characterizations of (τ_1, τ_2) - $T_{\frac{1}{2}}$ -spaces.

1 Introduction

In 1970, Levine [12] introduced the notion of generalized closed sets in topological spaces and defined a class of topological spaces called $T_{\frac{1}{2}}$ -spaces; a topological space (X, τ) is $T_{\frac{1}{2}}$ if every generalized closed set is closed. Dunham [10] showed that a topological space (X, τ) is $T_{\frac{1}{2}}$ if and only if each singleton of X is open or closed. Arenas et al. [1] proved that a topological

Key words and phrases: $\tau_1\tau_2$ -closed set, (τ_1, τ_2) - $T_{\frac{1}{2}}$ -space. AMS (MOS) Subject Classifications: 54A05, 54D10, 54E55. The corresponding author is Butsakorn Kong-ied. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net space (X, τ) is $T_{\frac{1}{2}}$ if and only if every subset of X is λ -closed. Dontchev and Ganster [8] introduced the notion of $T_{\frac{3}{4}}$ -spaces which are situated between T_1 and $T_{\frac{1}{2}}$ and showed that the digital line or the Khalimsky line [11] (\mathbb{Z}, κ) lies between T_1 and $T_{\frac{3}{4}}$. In 2012, Dungthaisong et al. [9] introduced and studied the notion of pairwise μ - $T_{\frac{1}{2}}$ spaces. Torton et al. [13] introduced and investigated the notions of $\mu_{(m,n)}$ - T_1 spaces, $\mu_{(m,n)}$ - T_3 spaces and $\mu_{(m,n)}$ - T_4 spaces. Buadong et al. [6] introduced and studied the notions of T_1 -GTMS spaces and T_2 -GTMS spaces. Recently, Viriyapong and Boonpok [15] investigated several characterizations of (Λ, p) - $T_{\frac{1}{2}}$ -spaces. Moreover, some characterizations $\delta p(\Lambda, s)$ - $T_{\frac{1}{2}}$ -spaces, Λ_{α} - $T_{\frac{1}{2}}$ -spaces and (Λ, s) - $T_{\frac{1}{2}}$ -spaces were established in [2], [3] and [4], respectively. In this paper, we introduce the notion of (τ_1, τ_2) - $T_{\frac{1}{2}}$ -spaces.

2 Preliminaries

Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [5] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [5] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [5] of A and is denoted by $\tau_1\tau_2$ -Int(A). The set $\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1\tau_2$ -open} is called the $\tau_1\tau_2$ -kernel [5] of A and is denoted by $\tau_1\tau_2$ -ker(A). A subset A of a bitopological space (X, τ_1, τ_2) is called a $\Lambda_{(\tau_1, \tau_2)}$ -set [7] if $A = \tau_1\tau_2$ -ker(A).

Lemma 2.1. [5] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -ker(A).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -ker $(A) \subseteq \tau_1 \tau_2$ -ker(B).
- (3) If A is $\tau_1\tau_2$ -open, then $\tau_1\tau_2$ -ker(A) = A.
- (4) $x \in \tau_1 \tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1 \tau_2$ -closed set H containing x.

On some characterizations of...

3 Some characterizations of (τ_1, τ_2) - $T_{\frac{1}{2}}$ -spaces

In this section, we introduce the notion of (τ_1, τ_2) - $T_{\frac{1}{2}}$ -spaces. Moreover, we discuss some characterizations of (τ_1, τ_2) - $T_{\frac{1}{2}}$ -spaces.

Definition 3.1. [14] A subset A of a bitopological space (X, τ_1, τ_2) is said to be generalized (τ_1, τ_2) -closed (briefly, g- (τ_1, τ_2) -closed) if $\tau_1\tau_2$ -Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$ -open.

Definition 3.2. A bitopological space (X, τ_1, τ_2) is called (τ_1, τ_2) - $T_{\frac{1}{2}}$ if every g- (τ_1, τ_2) -closed set of X is $\tau_1 \tau_2$ -closed.

Definition 3.3. [7] A subset A of a bitopological space (X, τ_1, τ_2) is called a $\Lambda^{\star}_{(\tau_1, \tau_2)}$ -set if $\tau_1 \tau_2$ -ker $(A) \subseteq F$ whenever $A \subseteq F$ and F is $\tau_1 \tau_2$ -closed.

Lemma 3.4. For a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) for each $x \in X$, the singleton $\{x\}$ is $\tau_1\tau_2$ -closed or $X \{x\}$ is g- (τ_1, τ_2) -closed;
- (2) for each $x \in X$, the singleton $\{x\}$ is $\tau_1 \tau_2$ -open or $X \{x\}$ is a $\Lambda^*_{(\tau_1, \tau_2)}$ -set.

Proof. (1) Let $x \in X$ and the singleton $\{x\}$ be not $\tau_1\tau_2$ -closed. Then we have $X - \{x\}$ is not $\tau_1\tau_2$ -open and X is the only $\tau_1\tau_2$ -open set which contains $X - \{x\}$ and hence $X - \{x\}$ is g- (τ_1, τ_2) -closed.

(2) Let $x \in X$ and the singleton $\{x\}$ be not $\tau_1\tau_2$ -open. Then we have $X - \{x\}$ is not $\tau_1\tau_2$ -closed and the only $\tau_1\tau_2$ -closed set which contains $X - \{x\}$ is X and hence $X - \{x\}$ is a $\Lambda^*_{(\tau_1,\tau_2)}$ -set.

Theorem 3.5. For a topological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{2}}$;
- (2) for each $x \in X$, the singleton $\{x\}$ is $\tau_1 \tau_2$ -open or $\tau_1 \tau_2$ -closed;
- (3) every $\Lambda^{\star}_{(\tau_1,\tau_2)}$ -set is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

Proof. (1) \Rightarrow (2): By Lemma 3.4, for each $x \in X$, the singleton $\{x\}$ is $\tau_1\tau_2$ closed or $X - \{x\}$ is g- (τ_1, τ_2) -closed. Since (X, τ_1, τ_2) is a (τ_1, τ_2) - $T_{\frac{1}{2}}$ -space, $X - \{x\}$ is $\tau_1\tau_2$ -closed and hence $\{x\}$ is $\tau_1\tau_2$ -open in the latter case. Thus the singleton $\{x\}$ is $\tau_1\tau_2$ -open or $\tau_1\tau_2$ -closed.

(2) \Rightarrow (3): Suppose that there exists a $\Lambda^*_{(\tau_1,\tau_2)}$ -set A which is not a $\Lambda_{(\tau_1,\tau_2)}$ set. There exists $x \in \tau_1 \tau_2$ -ker(A) such that $x \notin A$. In case the singleton $\{x\}$ is $\tau_1 \tau_2$ -open, $A \subseteq X - \{x\}$ and $X - \{x\}$ is $\tau_1 \tau_2$ -closed. Since A is a $\Lambda^*_{(\tau_1,\tau_2)}$ set, $\tau_1 \tau_2$ -ker(A) $\subseteq X - \{x\}$. This is a contradiction. In case the singleton $\{x\}$ is $\tau_1 \tau_2$ -closed, $A \subseteq X - \{x\}$ and $X - \{x\}$ is $\tau_1 \tau_2$ -open. By Lemma 2.1, $\tau_1 \tau_2$ -ker(A) $\subseteq \tau_1 \tau_2$ -ker($X - \{x\}$) = $X - \{x\}$. This is a contradiction. Thus every $\Lambda^*_{(\tau_1,\tau_2)}$ -set is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

(3) \Rightarrow (1): Suppose that (X, τ_1, τ_2) is not a (τ_1, τ_2) - $T_{\frac{1}{2}}$ -space. Then there exists a g- (τ_1, τ_2) -closed set A which is not $\tau_1\tau_2$ -closed. Since A is not $\tau_1\tau_2$ -closed, there exists $x \in \tau_1\tau_2$ -Cl(A) such that $x \notin A$. By Lemma 3.4, the singleton $\{x\}$ is $\tau_1\tau_2$ -open or $X - \{x\}$ is a $\Lambda^*_{(\tau_1,\tau_2)}$ -set. (a) In case $\{x\}$ is $\tau_1\tau_2$ -open, since $x \in \tau_1\tau_2$ -Cl(A), $\{x\} \cap A \neq \emptyset$ and $x \in A$. This is a contradiction. (b) In case $X - \{x\}$ is a $\Lambda^*_{(\tau_1,\tau_2)}$ -set, if $\{x\}$ is not $\tau_1\tau_2$ -closed, $X - \{x\}$ is not $\tau_1\tau_2$ -ker $(X - \{x\}) = X$. Hence, $X - \{x\}$ is not a $\Lambda^*_{(\tau_1,\tau_2)}$ -set. This contradicts (3). If $\{x\}$ is $\tau_1\tau_2$ -closed, then $X - \{x\}$ is $\tau_1\tau_2$ -open. Since $A \subseteq X - \{x\}$ and A is g- (τ_1, τ_2) -closed, we have $\tau_1\tau_2$ -Cl(A) $\subseteq X - \{x\}$. This contradicts that $x \in \tau_1\tau_2$ -Cl(A). Therefore, (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{2}}$.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] F. G. Arenas, J. Dontchev, M. Ganster, On λ -sets and dual of generalized continuity, Questions Answers Gen. Topology, **15**, (1997), 3–13.
- [2] C. Boonpok, N. Srisarakham, Properties of generalized $\delta p(\Lambda, s)$ -closed sets, Eur. J. Pure Appl. Math., **16**, no. 4, (2023), 2581–2596.
- [3] C. Boonpok, M. Thongmoon, Some properties of generalized (Λ, α) closed sets, Int. J. Anal. Appl., **21**, (2023), 88.
- [4] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.

- [5] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [6] S. Buadong, C. Viriyapong, C. Boonpok, On generalized topology and minimal structure spaces, Int. J. Math. Anal., 5, no. 31, (2011), 1507– 1516.
- [7] M. Chiangpradit, S. Sompong, C. Boonpok, $\Lambda_{(\tau_1,\tau_2)}$ -sets and related topological spaces, (submitted).
- [8] J. Dontchev, M. Ganster, On δ -generalized closed sets and $T_{\frac{3}{4}}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., **17**, (1996), 15–31.
- [9] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized closed sets in bigeneralized topological spaces, Int. J. Math. Anal., 5, no. 24, (2011), 1175–1184.
- [10] W. Dunham, $T_{\frac{1}{2}}$ -spaces, Kyungpook Math. J., **17**, (1977), 161–169.
- [11] E. K. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36, (1990), 1–17.
- [12] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89–96.
- [13] P. Torton, C. Viriyapong, C. Boonpok, Some separation axioms in bigeneralized topological spaces, Int. J. Math. Anal., 6, no. 56, (2012), 1175–1184.
- [14] C. Viriyapong, S. Sompong, C. Boonpok, Generalized (τ_1, τ_2) -closed sets in bitopological spaces, Int. J. Math. Comput. Sci., **19**, no. 3, (2024), 827–832.
- [15] C. Viriyapong, C. Boonpok, Characterizations of (Λ, p) - $T_{\frac{1}{2}}$ -spaces, Int. J. Math. Comput. Sci., **18**, no. 2, (2023), 243–247.