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Abstract

In this paper, we introduce the notion of (τ1, τ2)-T 1

2

-spaces. We

also investigate some characterizations of (τ1, τ2)-T 1

2

-spaces.

1 Introduction

In 1970, Levine [12] introduced the notion of generalized closed sets in topo-
logical spaces and defined a class of topological spaces called T 1

2

-spaces; a

topological space (X, τ) is T 1

2

if every generalized closed set is closed. Dun-

ham [10] showed that a topological space (X, τ) is T 1

2

if and only if each

singleton of X is open or closed. Arenas et al. [1] proved that a topological
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2
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space (X, τ) is T 1

2

if and only if every subset of X is λ-closed. Dontchev

and Ganster [8] introduced the notion of T 3

4

-spaces which are situated be-

tween T1 and T 1

2

and showed that the digital line or the Khalimsky line [11]

(Z, κ) lies between T1 and T 3

4

. In 2012, Dungthaisong et al. [9] introduced

and studied the notion of pairwise µ-T 1

2

spaces. Torton et al. [13] intro-
duced and investigated the notions of µ(m,n)-T1 spaces, µ(m,n)-T3 spaces and
µ(m,n)-T4 spaces. Buadong et al. [6] introduced and studied the notions of
T1-GTMS spaces and T2-GTMS spaces. Recently, Viriyapong and Boon-
pok [15] investigated several characterizations of (Λ, p)-T 1

2

-spaces. Moreover,

some characterizations δp(Λ, s)-T 1

2

-spaces, Λα-T 1

2

-spaces and (Λ, s)-T 1

2

-spaces

were established in [2], [3] and [4], respectively. In this paper, we introduce
the notion of (τ1, τ2)-T 1

2

-spaces and investigate several characterizations of

(τ1, τ2)-T 1

2

-spaces.

2 Preliminaries

Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A and
the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A),
respectively, for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is
called τ1τ2-closed [5] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed
set is called τ1τ2-open. The intersection of all τ1τ2-closed sets of X containing
A is called the τ1τ2-closure [5] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [5] of A
and is denoted by τ1τ2-Int(A). The set ∩{G | A ⊆ G and G is τ1τ2-open} is
called the τ1τ2-kernel [5] of A and is denoted by τ1τ2-ker(A). A subset A of
a bitopological space (X, τ1, τ2) is called a Λ(τ1,τ2)-set [7] if A = τ1τ2-ker(A).

Lemma 2.1. [5] For subsets A,B of a bitopological space (X, τ1, τ2), the
following properties hold:

(1) A ⊆ τ1τ2-ker(A).

(2) If A ⊆ B, then τ1τ2-ker(A) ⊆ τ1τ2-ker(B).

(3) If A is τ1τ2-open, then τ1τ2-ker(A) = A.

(4) x ∈ τ1τ2-ker(A) if and only if A ∩ H 6= ∅ for every τ1τ2-closed set H
containing x.



On some characterizations of... 871

3 Some characterizations of (τ1, τ2)-T1
2
-spaces

In this section, we introduce the notion of (τ1, τ2)-T 1

2

-spaces. Moreover, we

discuss some characterizations of (τ1, τ2)-T 1

2

-spaces.

Definition 3.1. [14] A subset A of a bitopological space (X, τ1, τ2) is said
to be generalized (τ1, τ2)-closed (briefly, g-(τ1, τ2)-closed) if τ1τ2-Cl(A) ⊆ U

whenever A ⊆ U and U is τ1τ2-open.

Definition 3.2. A bitopological space (X, τ1, τ2) is called (τ1, τ2)-T 1

2

if every

g-(τ1, τ2)-closed set of X is τ1τ2-closed.

Definition 3.3. [7] A subset A of a bitopological space (X, τ1, τ2) is called a
Λ⋆

(τ1,τ2)
-set if τ1τ2-ker(A) ⊆ F whenever A ⊆ F and F is τ1τ2-closed.

Lemma 3.4. For a bitopological space (X, τ1, τ2), the following properties
hold:

(1) for each x ∈ X, the singleton {x} is τ1τ2-closed or X−{x} is g-(τ1, τ2)-
closed;

(2) for each x ∈ X, the singleton {x} is τ1τ2-open or X −{x} is a Λ⋆
(τ1,τ2)

-
set.

Proof. (1) Let x ∈ X and the singleton {x} be not τ1τ2-closed. Then we
have X−{x} is not τ1τ2-open and X is the only τ1τ2-open set which contains
X − {x} and hence X − {x} is g-(τ1, τ2)-closed.

(2) Let x ∈ X and the singleton {x} be not τ1τ2-open. Then we have
X−{x} is not τ1τ2-closed and the only τ1τ2-closed set which contains X−{x}
is X and hence X − {x} is a Λ⋆

(τ1,τ2)
-set.

Theorem 3.5. For a topological space (X, τ1, τ2), the following properties
are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-T 1

2

;

(2) for each x ∈ X, the singleton {x} is τ1τ2-open or τ1τ2-closed;

(3) every Λ⋆
(τ1,τ2)

-set is a Λ(τ1,τ2)-set.
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Proof. (1) ⇒ (2): By Lemma 3.4, for each x ∈ X , the singleton {x} is τ1τ2-
closed or X − {x} is g-(τ1, τ2)-closed. Since (X, τ1, τ2) is a (τ1, τ2)-T 1

2

-space,

X − {x} is τ1τ2-closed and hence {x} is τ1τ2-open in the latter case. Thus
the singleton {x} is τ1τ2-open or τ1τ2-closed.

(2) ⇒ (3): Suppose that there exists a Λ⋆
(τ1,τ2)

-set A which is not a Λ(τ1,τ2)-

set. There exists x ∈ τ1τ2-ker(A) such that x 6∈ A. In case the singleton {x}
is τ1τ2-open, A ⊆ X − {x} and X − {x} is τ1τ2-closed. Since A is a Λ⋆

(τ1,τ2)
-

set, τ1τ2-ker(A) ⊆ X − {x}. This is a contradiction. In case the singleton
{x} is τ1τ2-closed, A ⊆ X − {x} and X − {x} is τ1τ2-open. By Lemma 2.1,
τ1τ2-ker(A) ⊆ τ1τ2-ker(X − {x}) = X − {x}. This is a contradiction. Thus
every Λ⋆

(τ1,τ2)
-set is a Λ(τ1,τ2)-set.

(3) ⇒ (1): Suppose that (X, τ1, τ2) is not a (τ1, τ2)-T 1

2

-space. Then there

exists a g-(τ1, τ2)-closed set A which is not τ1τ2-closed. Since A is not τ1τ2-
closed, there exists x ∈ τ1τ2-Cl(A) such that x 6∈ A. By Lemma 3.4, the
singleton {x} is τ1τ2-open or X−{x} is a Λ⋆

(τ1,τ2)
-set. (a) In case {x} is τ1τ2-

open, since x ∈ τ1τ2-Cl(A), {x} ∩ A 6= ∅ and x ∈ A. This is a contradiction.
(b) In case X − {x} is a Λ⋆

(τ1,τ2)
-set, if {x} is not τ1τ2-closed, X − {x} is not

τ1τ2-open and τ1τ2-ker(X − {x}) = X . Hence, X − {x} is not a Λ⋆
(τ1,τ2)

-set.

This contradicts (3). If {x} is τ1τ2-closed, then X − {x} is τ1τ2-open. Since
A ⊆ X −{x} and A is g-(τ1, τ2)-closed, we have τ1τ2-Cl(A) ⊆ X −{x}. This
contradicts that x ∈ τ1τ2-Cl(A). Therefore, (X, τ1, τ2) is (τ1, τ2)-T 1

2

.
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