International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 815–820

Properties of (τ_1, τ_2) *-closed sets

Monchaya Chiangpradit¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: monchaya.c@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received December 8, 2023, Accepted February 1, 2024, Published February 12, 2024)

Abstract

In this paper, we introduce the notion of (τ_1, τ_2) *-closed sets. Moreover, we investigate some properties of (τ_1, τ_2) *-closed sets and (τ_1, τ_2) *-open sets.

1 Introduction

The notion of generalized closed sets was first introduced by Levine [11]. A subset A of a topological space X is called generalized closed if $Cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open. Moreover, Levine [11] studied some properties of generalized closed sets and generalized open sets. In [13], the present

Key words and phrases: (τ_1, τ_2) *-open set, (τ_1, τ_2) *-closed set. AMS (MOS) Subject Classifications: 54A05, 54E55. The corresponding author is Monchaya Chiangpradit. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net authors introduced and investigated the notions of generalized (Λ, p) -closed sets and generalized (Λ, p) -open sets. Some properties of generalized (Λ, α) closed sets, generalized $\delta p(\Lambda, s)$ -closed sets, generalized (Λ, s) -closed sets and generalized (Λ, sp) -closed sets were studied in [1], [2], [3] and [4], respectively. Kelly [10] introduced the notion of bitopological spaces. Such spaces are equipped with two topologies. Generalized closed sets and generalized open sets are extended to bitopological spaces by Fukutake [7]. Dungthaisong et al. [6] introduced and studied the notions of $\mu_{(m,n)}$ -closed sets and $\mu_{(m,n)}$ -open sets in bigeneralized topological spaces. Jafari and Rajesh [8] introduced and investigated the notion of generalized closed sets with respect to an ideal in ideal topological spaces. A subset A of an ideal topological space X is called generalized closed with respect to an ideal if $\operatorname{Cl}(A) - U \in \mathscr{I}$, whenever $A \subseteq U$ and U is open. Noiri and Rajesh [12] introduced and studied the notion of generalized closed sets with respect to an ideal in ideal bitopological spaces. In this paper, we introduce the notion of (τ_1, τ_2) *-closed sets. Moreover, we discuss some properties of (τ_1, τ_2) *-closed sets and (τ_1, τ_2) *-open sets.

2 Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [5] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [5] of A and is denoted by $\tau_1 \tau_2$ -Cl(A).

Lemma 2.1. [5] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).

Properties of (τ_1, τ_2) *-closed sets

(5)
$$\tau_1 \tau_2 - Cl(X - A) = X - \tau_1 \tau_2 - Int(A).$$

A nonempty collection \mathscr{I} of subsets of X is called an *ideal* [9] if satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ implies $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ implies $A \cup B \in \mathscr{I}$.

3 Properties of (τ_1, τ_2) *-closed sets

In this section, we introduce the notion of (τ_1, τ_2) *-closed sets. Moreover, some properties of (τ_1, τ_2) *-closed sets and (τ_1, τ_2) *-open sets are discussed.

Definition 3.1. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. A subset A of X is said to be (τ_1, τ_2) *-closed if $\tau_1\tau_2$ -Cl $(A) - U \in \mathscr{I}$ whenever $A \subseteq U$ and U is $\tau_1\tau_2$ -open.

Theorem 3.2. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. A subset A of X is (τ_1, τ_2) *-closed if and only if $F \subseteq \tau_1 \tau_2$ -Cl(A) – A and F is $\tau_1 \tau_2$ -closed in X implies $F \in \mathscr{I}$.

Proof. Let F be a $\tau_1\tau_2$ -closed set and $F \subseteq \tau_1\tau_2$ -Cl(A) - A. Then $A \subseteq X - F$. By hypothesis, $\tau_1\tau_2$ -Cl $(A) - (X - F) \in \mathscr{I}$. Since $F \subseteq \tau_1\tau_2$ -Cl(A) - (X - F), we have $F \in \mathscr{I}$.

Conversely, suppose that $F \subseteq \tau_1 \tau_2$ -Cl(A) – A and F is $\tau_1 \tau_2$ -closed in X implies $F \in \mathscr{I}$. Let U be a $\tau_1 \tau_2$ -open set and $A \subseteq U$. Then

$$\tau_1 \tau_2 \operatorname{-Cl}(A) - U = \tau_1 \tau_2 \operatorname{-Cl}(A) \cap (X - U)$$

is a $\tau_1\tau_2$ -closed in X, that is contained in $\tau_1\tau_2$ -Cl(A)-A. By the hypothesis, $\tau_1\tau_2$ -Cl(A) - U $\in \mathscr{I}$. Thus A is (τ_1, τ_2) *-closed.

Theorem 3.3. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. If A and B are $(\tau_1, \tau_2)\star$ -closed in X, then $A \cup B$ is $(\tau_1, \tau_2)\star$ -closed.

Proof. Suppose that A and B are (τ_1, τ_2) *-closed. Let U be a $\tau_1\tau_2$ -open set and $A \cup B \subseteq U$. Then we have $A \subseteq U$ and $B \subseteq U$. By the hypothesis, $\tau_1\tau_2$ -Cl $(A) - U \in \mathscr{I}$ and $\tau_1\tau_2$ -Cl $(B) - U \in \mathscr{I}$. Thus

$$\tau_1\tau_2\operatorname{-Cl}(A\cup B) - U = [\tau_1\tau_2\operatorname{-Cl}(A) - U] \cup [\tau_1\tau_2\operatorname{-Cl}(B) - U] \in \mathscr{I}$$

This shows that $A \cup B$ is (τ_1, τ_2) *-closed.

Theorem 3.4. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. If A is a (τ_1, τ_2) *-closed set and F is a $\tau_1\tau_2$ -closed set of X, then $A \cap F$ is (τ_1, τ_2) *-closed.

Proof. Let V be a $\tau_1\tau_2$ -open set and $A \cup F \subseteq V$. Then $A \subseteq V \cup (X - F)$. Since A is (τ_1, τ_2) *-closed, we have $\tau_1\tau_2$ -Cl $(A) - (V \cup (X - F)) \in \mathscr{I}$. Now, $\tau_1\tau_2$ -Cl $(A \cap F) \subseteq \tau_1\tau_2$ -Cl $(A) \cap F = (\tau_1\tau_2$ -Cl $(A) \cap F) - (X - F)$. Thus

$$\tau_1 \tau_2 \operatorname{-Cl}(A \cap F) - V \subseteq \tau_1 \tau_2 \operatorname{-Cl}(A) \cap F - (V \cap (X - F))$$
$$\subseteq \tau_1 \tau_2 \operatorname{-Cl}(A) - (V \cup (X - F)) \in \mathscr{I}$$

and hence $A \cap F$ is (τ_1, τ_2) *-closed.

Theorem 3.5. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. If A is (τ_1, τ_2) *-closed in X and $A \subseteq B \subseteq \tau_1 \tau_2$ -Cl(A), then B is (τ_1, τ_2) *-closed.

Proof. Let V be a $\tau_1\tau_2$ -open set and $B \subseteq V$. Then, $A \subseteq V$. Since A is (τ_1, τ_2) *-closed, we have $\tau_1\tau_2$ -Cl(A) - V $\in \mathscr{I}$. Now $B \subseteq \tau_1\tau_2$ -Cl(A) implies that $\tau_1\tau_2$ -Cl(B) - V $\subseteq \tau_1\tau_2$ -Cl(A) - V $\in \mathscr{I}$. Thus B is (τ_1, τ_2) *-closed.

Definition 3.6. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. A subset A of X is said to be $(\tau_1, \tau_2)\star$ -open if X - A is $(\tau_1, \tau_2)\star$ -closed.

Theorem 3.7. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. A subset A of X is (τ_1, τ_2) *-open if and only if $F - V \subseteq \tau_1 \tau_2$ -Int(A) for some $V \in \mathscr{I}$, whenever $F \subseteq A$ and F is $\tau_1 \tau_2$ -closed.

Proof. Let F be a $\tau_1\tau_2$ -closed set and $F \subseteq A$. Then we have $X - A \subseteq X - F$. By the hypothesis, $\tau_1\tau_2$ -Cl $(X - A) \subseteq (X - F) \cup V$ for some $V \in \mathscr{I}$. Thus $X - ((X - F) \cup V) \subseteq X - \tau_1\tau_2$ -Cl(X - A) and hence $F - V \subseteq \tau_1\tau_2$ -Int(A).

Conversely, let G be a $\tau_1\tau_2$ -open set and $X - A \subseteq G$. Then $X - G \subseteq A$. By the hypothesis, $(X - G) - V \subseteq \tau_1\tau_2$ -Int $(A) = X - \tau_1\tau_2$ -Cl(X - A) for some $V \in \mathscr{I}$. This gives that $X - (G \cup V) \subseteq X - \tau_1\tau_2$ -Cl(X - A). Therefore, $\tau_1\tau_2$ -Cl $(X - A) \subseteq G \cup V$ for some $V \in \mathscr{I}$. Thus $\tau_1\tau_2$ -Cl $(X - A) - G \in \mathscr{I}$. This shows that X - A is (τ_1, τ_2) *-closed and hence A is (τ_1, τ_2) *-open. \Box

Theorem 3.8. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. If A and B are (τ_1, τ_2) *-open sets of X such that $\tau_1\tau_2$ -Cl(A) $\cap B = \emptyset$ and $\tau_1\tau_2$ -Cl(B) $\cap A = \emptyset$, then $A \cup B$ is (τ_1, τ_2) *-open.

Properties of (τ_1, τ_2) *-closed sets

Proof. Let F be a $\tau_1\tau_2$ -closed set and $F \subseteq A \cup B$. Then $\tau_1\tau_2$ -Cl $(A) \cap F \subseteq A$ and $\tau_1\tau_2$ -Cl $(B) \cap F \subseteq B$. By the hypothesis, $\tau_1\tau_2$ -Cl $(A) \cap F - U \subseteq \tau_1\tau_2$ -Int(A)and $\tau_1\tau_2$ -Cl $(B) \cap F - V \subseteq \tau_1\tau_2$ -Int(B) for some $U, V \in \mathscr{I}$. This means that $\tau_1\tau_2$ -Cl $(A) \cap F - \tau_1\tau_2$ -Int $(A) \in \mathscr{I}$ and $\tau_1\tau_2$ -Cl $(B) \cap F - \tau_1\tau_2$ -Int $(B) \in \mathscr{I}$. Thus $[(\tau_1\tau_2$ -Cl $(A) \cap F - \tau_1\tau_2$ -Int $(A)) \cup (\tau_1\tau_2$ -Cl $(B) \cap F - \tau_1\tau_2$ -Int $(B))] \in \mathscr{I}$ and hence $[F \cap (\tau_1\tau_2$ -Cl $(A) \cup \tau_1\tau_2$ -Cl $(B)) - (\tau_1\tau_2$ -Int $(A) \cup \tau_1\tau_2$ -Int $(B))] \in \mathscr{I}$. Since $F = (A \cup B) \cap F \subseteq \tau_1\tau_2$ -Cl $(A \cup B) \cap F$, we have

$$F - \tau_1 \tau_2 \operatorname{-Int}(A \cup B) \subseteq [\tau_1 \tau_2 \operatorname{-Cl}(A \cup B) \cap F] - \tau_1 \tau_2 \operatorname{-Int}(A \cup B)$$
$$\subseteq [(\tau_1 \tau_2 \operatorname{-Cl}(A \cup B) \cap F) - (\tau_1 \tau_2 \operatorname{-Int}(A) \cup \tau_1 \tau_2 \operatorname{-Int}(B))] \in \mathscr{I}$$

and hence $F - G \subseteq \tau_1 \tau_2$ -Int $(A \cup B)$ for some $G \in \mathscr{I}$. This proves that $A \cup B$ is (τ_1, τ_2) *-open.

Theorem 3.9. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. If A is (τ_1, τ_2) *-open in X and $\tau_1\tau_2$ -Int $(A) \subseteq B \subseteq A$, then B is (τ_1, τ_2) *-open.

Proof. Suppose that A is (τ_1, τ_2) *-open and $\tau_1\tau_2$ -Int $(A) \subseteq B \subseteq A$. Then $X - A \subseteq X - B \subseteq \tau_1\tau_2$ -Cl(X - A) and X - A is (τ_1, τ_2) *-closed. By Theorem 3.5, X - B is (τ_1, τ_2) *-closed and hence B is (τ_1, τ_2) *-open.

Theorem 3.10. Let (X, τ_1, τ_2) be a bitopological space and \mathscr{I} be an ideal on X. A subset A of X is (τ_1, τ_2) *-closed if and only if $\tau_1\tau_2$ -Cl(A) – A is (τ_1, τ_2) *-open.

Proof. Suppose that $F \subseteq \tau_1 \tau_2$ -Cl(A) – A and F is $\tau_1 \tau_2$ -closed. Then we have $F \in \mathscr{I}$. This implies that $F - V = \emptyset$ for some $V \in \mathscr{I}$. Thus $F - V \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A) – A). By Theorem 3.7, $\tau_1 \tau_2$ -Cl(A) – A is (τ_1, τ_2) *-open. Conversely, let V be a $\tau_1 \tau_2$ -open set and $A \subseteq V$. Then

 $\tau_1\tau_2\operatorname{-Cl}(A) \cap (X - V) \subseteq \tau_1\tau_2\operatorname{-Cl}(A) \cap (X - A) = \tau_1\tau_2\operatorname{-Cl}(A) - A.$

By the hypothesis, $[\tau_1\tau_2\text{-}Cl(A) \cap (X-V)] - G \subseteq \tau_1\tau_2\text{-}Int(\tau_1\tau_2\text{-}Cl(A) - A) = \emptyset$ for some $G \in \mathscr{I}$. Thus $\tau_1\tau_2\text{-}Cl(A) \cap (X-V) \subseteq G \in \mathscr{I}$ and hence $\tau_1\tau_2\text{-}Cl(A) - G \in \mathscr{I}$. This shows that A is (τ_1, τ_2) *-closed.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, M. Thongmoon, Some properties of generalized (Λ, α) closed sets, Int. J. Anal. Appl., **21**, (2023), 88.
- [2] C. Boonpok, N. Srisarakham, Properties of generalized $\delta p(\Lambda, s)$ -closed sets, Eur. J. Pure Appl. Math., **16**, no. 4, (2023), 2581–2596.
- [3] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [4] C. Boonpok, C. Viriyapong, On generalized (Λ, sp) -closed sets, Eur. J. Pure Appl. Math., **15**, no. 4, (2022), 2127–2140.
- [5] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [6] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized closed sets in bigeneralized topological spaces, Int. J. Math. Anal., 5, no. 24, (2011), 1175–1184.
- T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. III, 35, (1985), 19–28.
- [8] S. Jafari, N. Rajesh, Generalized closed sets with respect to an ideal, Eur. J. Pure Appl. Math., 4, no. 2, (2011), 147–151.
- D. Janković, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97, (1990), 295–310.
- [10] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13, (1963), 71–89.
- [11] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, (1970), 89–96.
- [12] T. Noiri, N. Rajesh, Generalized closed sets with respect to an ideal in bitopological spaces, Acta Math. Hungar., 125, nos. 1-2, (2009), 17–20.
- [13] C. Viriyapong, C. Boonpok, On generalized (Λ, p) -closed sets, Int. J. Math. Comput. Sci., **18**, no. 1, (2023), 79–83.