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Abstract

In this paper, we introduce the notion of (τ1, τ2)⋆-closed sets.
Moreover, we investigate some properties of (τ1, τ2)⋆-closed sets and
(τ1, τ2)⋆-open sets.

1 Introduction

The notion of generalized closed sets was first introduced by Levine [11]. A
subset A of a topological space X is called generalized closed if Cl(A) ⊆ U ,
whenever A ⊆ U and U is open. Moreover, Levine [11] studied some proper-
ties of generalized closed sets and generalized open sets. In [13], the present
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authors introduced and investigated the notions of generalized (Λ, p)-closed
sets and generalized (Λ, p)-open sets. Some properties of generalized (Λ, α)-
closed sets, generalized δp(Λ, s)-closed sets, generalized (Λ, s)-closed sets and
generalized (Λ, sp)-closed sets were studied in [1], [2], [3] and [4], respectively.
Kelly [10] introduced the notion of bitopological spaces. Such spaces are
equipped with two topologies. Generalized closed sets and generalized open
sets are extended to bitopological spaces by Fukutake [7]. Dungthaisong et al.
[6] introduced and studied the notions of µ(m,n)-closed sets and µ(m,n)-open
sets in bigeneralized topological spaces. Jafari and Rajesh [8] introduced and
investigated the notion of generalized closed sets with respect to an ideal in
ideal topological spaces. A subset A of an ideal topological space X is called
generalized closed with respect to an ideal if Cl(A)−U ∈ I , whenever A ⊆ U

and U is open. Noiri and Rajesh [12] introduced and studied the notion of
generalized closed sets with respect to an ideal in ideal bitopological spaces.
In this paper, we introduce the notion of (τ1, τ2)⋆-closed sets. Moreover, we
discuss some properties of (τ1, τ2)⋆-closed sets and (τ1, τ2)⋆-open sets.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [5] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [5] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in
A is called the τ1τ2-interior [5] of A and is denoted by τ1τ2-Int(A).

Lemma 2.1. [5] Let A and B be subsets of a bitopological space (X, τ1, τ2).
For the τ1τ2-closure, the following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
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(5) τ1τ2-Cl(X − A) = X − τ1τ2-Int(A).

A nonempty collection I of subsets of X is called an ideal [9] if satisfying
the following properties: (1) A ∈ I and B ⊆ A implies B ∈ I ; (2) A ∈ I

and B ∈ I implies A ∪ B ∈ I .

3 Properties of (τ1, τ2)⋆-closed sets

In this section, we introduce the notion of (τ1, τ2)⋆-closed sets. Moreover,
some properties of (τ1, τ2)⋆-closed sets and (τ1, τ2)⋆-open sets are discussed.

Definition 3.1. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. A subset A of X is said to be (τ1, τ2)⋆-closed if τ1τ2-Cl(A) − U ∈ I

whenever A ⊆ U and U is τ1τ2-open.

Theorem 3.2. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. A subset A of X is (τ1, τ2)⋆-closed if and only if F ⊆ τ1τ2-Cl(A)−A and
F is τ1τ2-closed in X implies F ∈ I .

Proof. Let F be a τ1τ2-closed set and F ⊆ τ1τ2-Cl(A)−A. Then A ⊆ X−F .
By hypothesis, τ1τ2-Cl(A)− (X−F ) ∈ I . Since F ⊆ τ1τ2-Cl(A)− (X−F ),
we have F ∈ I .

Conversely, suppose that F ⊆ τ1τ2-Cl(A) − A and F is τ1τ2-closed in X

implies F ∈ I . Let U be a τ1τ2-open set and A ⊆ U . Then

τ1τ2-Cl(A)− U = τ1τ2-Cl(A) ∩ (X − U)

is a τ1τ−2-closed inX , that is contained in τ1τ2-Cl(A)−A. By the hypothesis,
τ1τ2-Cl(A)− U ∈ I . Thus A is (τ1, τ2)⋆-closed.

Theorem 3.3. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. If A and B are (τ1, τ2)⋆-closed in X, then A ∪B is (τ1, τ2)⋆-closed.

Proof. Suppose that A and B are (τ1, τ2)⋆-closed. Let U be a τ1τ2-open set
and A ∪ B ⊆ U . Then we have A ⊆ U and B ⊆ U . By the hypothesis,
τ1τ2-Cl(A)− U ∈ I and τ1τ2-Cl(B)− U ∈ I . Thus

τ1τ2-Cl(A ∪B)− U = [τ1τ2-Cl(A)− U ] ∪ [τ1τ2-Cl(B)− U ] ∈ I .

This shows that A ∪B is (τ1, τ2)⋆-closed.
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Theorem 3.4. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. If A is a (τ1, τ2)⋆-closed set and F is a τ1τ2-closed set of X, then A ∩ F

is (τ1, τ2)⋆-closed.

Proof. Let V be a τ1τ2-open set and A ∪ F ⊆ V . Then A ⊆ V ∪ (X − F ).
Since A is (τ1, τ2)⋆-closed, we have τ1τ2-Cl(A)− (V ∪ (X − F )) ∈ I . Now,
τ1τ2-Cl(A ∩ F ) ⊆ τ1τ2-Cl(A) ∩ F = (τ1τ2-Cl(A) ∩ F )− (X − F ). Thus

τ1τ2-Cl(A ∩ F )− V ⊆ τ1τ2-Cl(A) ∩ F − (V ∩ (X − F ))

⊆ τ1τ2-Cl(A)− (V ∪ (X − F )) ∈ I

and hence A ∩ F is (τ1, τ2)⋆-closed.

Theorem 3.5. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. If A is (τ1, τ2)⋆-closed in X and A ⊆ B ⊆ τ1τ2-Cl(A), then B is (τ1, τ2)⋆-
closed.

Proof. Let V be a τ1τ2-open set and B ⊆ V . Then, A ⊆ V . Since A is
(τ1, τ2)⋆-closed, we have τ1τ2-Cl(A) − V ∈ I . Now B ⊆ τ1τ2-Cl(A) implies
that τ1τ2-Cl(B)− V ⊆ τ1τ2-Cl(A)− V ∈ I . Thus B is (τ1, τ2)⋆-closed.

Definition 3.6. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. A subset A of X is said to be (τ1, τ2)⋆-open if X −A is (τ1, τ2)⋆-closed.

Theorem 3.7. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. A subset A of X is (τ1, τ2)⋆-open if and only if F − V ⊆ τ1τ2-Int(A) for
some V ∈ I , whenever F ⊆ A and F is τ1τ2-closed.

Proof. Let F be a τ1τ2-closed set and F ⊆ A. Then we have X−A ⊆ X−F .
By the hypothesis, τ1τ2-Cl(X − A) ⊆ (X − F ) ∪ V for some V ∈ I . Thus
X − ((X − F ) ∪ V ) ⊆ X − τ1τ2-Cl(X − A) and hence F − V ⊆ τ1τ2-Int(A).

Conversely, let G be a τ1τ2-open set and X −A ⊆ G. Then X −G ⊆ A.
By the hypothesis, (X − G) − V ⊆ τ1τ2-Int(A) = X − τ1τ2-Cl(X − A) for
some V ∈ I . This gives that X− (G∪V ) ⊆ X−τ1τ2-Cl(X−A). Therefore,
τ1τ2-Cl(X − A) ⊆ G ∪ V for some V ∈ I . Thus τ1τ2-Cl(X − A)− G ∈ I .
This shows that X − A is (τ1, τ2)⋆-closed and hence A is (τ1, τ2)⋆-open.

Theorem 3.8. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. If A and B are (τ1, τ2)⋆-open sets of X such that τ1τ2-Cl(A)∩B = ∅ and
τ1τ2-Cl(B) ∩ A = ∅, then A ∪ B is (τ1, τ2)⋆-open.



Properties of (τ1, τ2)⋆-closed sets 819

Proof. Let F be a τ1τ2-closed set and F ⊆ A∪B. Then τ1τ2-Cl(A)∩F ⊆ A

and τ1τ2-Cl(B)∩F ⊆ B. By the hypothesis, τ1τ2-Cl(A)∩F−U ⊆ τ1τ2-Int(A)
and τ1τ2-Cl(B) ∩ F − V ⊆ τ1τ2-Int(B) for some U, V ∈ I . This means that
τ1τ2-Cl(A) ∩ F − τ1τ2-Int(A) ∈ I and τ1τ2-Cl(B) ∩ F − τ1τ2-Int(B) ∈ I .
Thus [(τ1τ2-Cl(A) ∩ F − τ1τ2-Int(A)) ∪ (τ1τ2-Cl(B) ∩ F − τ1τ2-Int(B))] ∈ I

and hence [F ∩ (τ1τ2-Cl(A)∪ τ1τ2-Cl(B))− (τ1τ2-Int(A)∪ τ1τ2-Int(B))] ∈ I .
Since F = (A ∪ B) ∩ F ⊆ τ1τ2-Cl(A ∪B) ∩ F , we have

F − τ1τ2-Int(A ∪ B) ⊆ [τ1τ2-Cl(A ∪B) ∩ F ]− τ1τ2-Int(A ∪B)

⊆ [(τ1τ2-Cl(A ∪B) ∩ F )− (τ1τ2-Int(A) ∪ τ1τ2-Int(B))] ∈ I

and hence F −G ⊆ τ1τ2-Int(A∪B) for some G ∈ I . This proves that A∪B

is (τ1, τ2)⋆-open.

Theorem 3.9. Let (X, τ1, τ2) be a bitopological space and I be an ideal on
X. If A is (τ1, τ2)⋆-open in X and τ1τ2-Int(A) ⊆ B ⊆ A, then B is (τ1, τ2)⋆-
open.

Proof. Suppose that A is (τ1, τ2)⋆-open and τ1τ2-Int(A) ⊆ B ⊆ A. Then
X−A ⊆ X−B ⊆ τ1τ2-Cl(X−A) and X−A is (τ1, τ2)⋆-closed. By Theorem
3.5, X − B is (τ1, τ2)⋆-closed and hence B is (τ1, τ2)⋆-open.

Theorem 3.10. Let (X, τ1, τ2) be a bitopological space and I be an ideal
on X. A subset A of X is (τ1, τ2)⋆-closed if and only if τ1τ2-Cl(A) − A is
(τ1, τ2)⋆-open.

Proof. Suppose that F ⊆ τ1τ2-Cl(A)−A and F is τ1τ2-closed. Then we have
F ∈ I . This implies that F − V = ∅ for some V ∈ I . Thus F − V ⊆

τ1τ2-Int(τ1τ2-Cl(A)−A). By Theorem 3.7, τ1τ2-Cl(A)−A is (τ1, τ2)⋆-open.

Conversely, let V be a τ1τ2-open set and A ⊆ V . Then

τ1τ2-Cl(A) ∩ (X − V ) ⊆ τ1τ2-Cl(A) ∩ (X − A) = τ1τ2-Cl(A)− A.

By the hypothesis, [τ1τ2-Cl(A)∩ (X − V )]−G ⊆ τ1τ2-Int(τ1τ2-Cl(A)−A) =
∅ for some G ∈ I . Thus τ1τ2-Cl(A) ∩ (X − V ) ⊆ G ∈ I and hence
τ1τ2-Cl(A)−G ∈ I . This shows that A is (τ1, τ2)⋆-closed.
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