International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 861–867

On regular generalized (τ_1, τ_2) -closed sets

Nipaporn Chutiman¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: nipaporn.c@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received December 21, 2023, Accepted February 2, 2024, Published February 12, 2024)

Abstract

In this paper, we deal with the concept of regular generalized (τ_1, τ_2) -closed sets. First, we introduce the notion of regular generalized (τ_1, τ_2) -closed sets. Next, we study some properties of regular generalized (τ_1, τ_2) -closed sets and regular generalized (τ_1, τ_2) -closed sets and regular generalized (τ_1, τ_2) -open sets. Finally, we consider some characterizations of (τ_1, τ_2) -transformed sets.

1 Introduction

Levine [10] introduced generalized closed sets and generalized open sets in topological spaces. Dunham and Levine [9] investigated further properties of generalized closed sets. Noiri and Roy [12] introduced and studied the

Key words and phrases: Regular generalized (τ_1, τ_2) -closed set, regular generalized (τ_1, τ_2) -open set.

AMS (MOS) Subject Classifications: 54A05, 54E55.

The corresponding author is Nipaporn Chutiman.

ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

concept of generalized μ -closed sets in a topological space by using the concept of generalized open sets introduced by Császár [7]. The class of all generalized μ -closed sets is strictly larger than the class of all μ -closed sets. Furthermore, generalized closed sets is a special type of generalized μ -closed sets in a topological space. Dungthaisong et al. [8] introduced and studied the notions of $\mu_{(m,n)}$ -closed sets and $\mu_{(m,n)}$ -open sets in bigeneralized topological spaces. Some properties of generalized (Λ, α) -closed sets, generalized $\delta p(\Lambda, s)$ -closed sets, generalized (Λ, s) -closed sets, generalized (Λ, sp) -closed sets and generalized (Λ, p) -closed sets were studied in [1], [2], [3], [4] and [15], respectively. As a modification of generalized closed sets, Palaniappan and Rao [13] introduced and studied the notion of regular generalized closed sets. As a further modification of regular generalized closed sets, Noiri and Popa [11] introduced and investigated the concept of regular generalized α -closed sets. Roy [14] defined a new kind of sets called regular μ -generalized closed sets in a topological space. In this paper, we introduce the concept of regular generalized (τ_1, τ_2) -closed sets. Moreover, we investigate some properties of regular generalized (τ_1, τ_2) -closed sets and regular generalized (τ_1, τ_2) -open sets.

2 Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [6] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [6] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [6] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)r$ -closed) [16] if $A = \tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A)) (resp. $A = \tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A))).

Lemma 2.1. [6] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.

On regular generalized (τ_1, τ_2) -closed sets

- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A).$

3 On regular generalized (τ_1, τ_2) -closed sets

We begin this section by introducing the concept of regular generalized (τ_1, τ_2) -closed sets.

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be regular generalized (τ_1, τ_2) -closed (briefly, rg- (τ_1, τ_2) -closed) if $\tau_1\tau_2$ -Cl(A) \subseteq U whenever $A \subseteq U$ and U is (τ_1, τ_2) r-open.

Theorem 3.2. Let (X, τ_1, τ_2) be a bitopological space and $A, B \subseteq X$. If A and B are rg- (τ_1, τ_2) -closed sets, then $A \cup B$ is rg- (τ_1, τ_2) -closed.

Proof. Let W be a $(\tau_1, \tau_2)r$ -open set and $A \cup B \subseteq W$. Then, $A \subseteq W$ and $B \subseteq W$. Since A and B are rg- (τ_1, τ_2) -closed, we have $\tau_1\tau_2$ -Cl $(A) \subseteq W$ and $\tau_1\tau_2$ -Cl $(B) \subseteq W$. Thus, $\tau_1\tau_2$ -Cl $(A \cup B) = \tau_1\tau_2$ -Cl $(A) \cup \tau_1\tau_2$ -Cl $(B) \subseteq W$ and hence $A \cup B$ is rg- (τ_1, τ_2) -closed.

Theorem 3.3. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. If A is rg- (τ_1, τ_2) -closed, then $\tau_1\tau_2$ -Cl(A) – A contains no nonempty $(\tau_1, \tau_2)r$ -closed set.

Proof. Suppose that A is rg- (τ_1, τ_2) -closed. Let F be a $(\tau_1, \tau_2)r$ -closed subset of $\tau_1\tau_2$ -Cl(A) – A. Then $F \subseteq \tau_1\tau_2$ -Cl(A) $\cap (X - A)$ and hence $A \subseteq X - F$. Since X - F is $\tau_1\tau_2$ -open and A is rg- (τ_1, τ_2) -closed, $\tau_1\tau_2$ -Cl(A) $\subseteq X - F$. Therefore, $F \subseteq X - \tau_1\tau_2$ -Cl(A). Since $F \subseteq \tau_1\tau_2$ -Cl(A), $F \subseteq \tau_1\tau_2$ -Cl(A) $\cap [X - \tau_1\tau_2$ -Cl(A)] = \emptyset . This shows that $F = \emptyset$.

Corollary 3.4. Let (X, τ_1, τ_2) be a bitopological space and A be a rg- (τ_1, τ_2) closed set. Then A is $(\tau_1, \tau_2)r$ -closed if and only if $\tau_1\tau_2$ - $Cl(\tau_1\tau_2$ -Int(A)) - Ais $(\tau_1, \tau_2)r$ -closed.

Proof. Let A be a $(\tau_1, \tau_2)r$ -closed set. Then, $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(A)) - A = \emptyset$. Thus, $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)) - A is $(\tau_1, \tau_2)r$ -closed.

Conversely, suppose that $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)) – A is $(\tau_1, \tau_2)r$ -closed. Since A is rg- (τ_1, τ_2) -closed and $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)) – A contains the $(\tau_1, \tau_2)r$ -closed set $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)) – A. By Theorem 3.3,

$$\tau_1 \tau_2$$
-Cl $(\tau_1 \tau_2$ -Int $(A)) - A = \emptyset$.

Thus, $\tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int(A)) = A and hence A is $(\tau_1, \tau_2)r$ -closed.

Theorem 3.5. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. If A is rg- (τ_1, τ_2) -closed and $A \subseteq B \subseteq \tau_1\tau_2$ -Cl(A), then $\tau_1\tau_2$ -Cl(B) - B contains no nonempty $(\tau_1, \tau_2)r$ -closed set.

Proof. $A \subseteq B$ implies $X - B \subseteq X - A$ and $B \subseteq \tau_1 \tau_2$ -Cl(A) implies

$$\tau_1\tau_2\operatorname{-Cl}(B) \subseteq \tau_1\tau_2\operatorname{-Cl}(\tau_1\tau_2\operatorname{-Cl}(A)) = \tau_1\tau_2\operatorname{-Cl}(A).$$

Thus, $\tau_1\tau_2$ -Cl(B) $\subseteq \tau_1\tau_2$ -Cl(A) and hence $\tau_1\tau_2$ -Cl(B) $-B \subseteq \tau_1\tau_2$ -Cl(A) -A. Since A is rg- (τ_1, τ_2) -closed, $\tau_1\tau_2$ -Cl(A) -A has no nonempty $(\tau_1, \tau_2)r$ -closed subsets, neither does $\tau_1\tau_2$ -Cl(B) -B.

Definition 3.6. A subset A of a bitopological space (X, τ_1, τ_2) is said to be regular generalized (τ_1, τ_2) -open (briefly, rg- (τ_1, τ_2) -open) if X - A is regular generalized (τ_1, τ_2) -closed.

Theorem 3.7. A subset A of a bitopological space (X, τ_1, τ_2) is $rg(\tau_1, \tau_2)$ open if and only if $F \subseteq \tau_1 \tau_2$ -Int(A) whenever $F \subseteq A$ and F is (τ_1, τ_2) r-closed.

Proof. Suppose that A is a rg- (τ_1, τ_2) -open set. Let F be a $(\tau_1, \tau_2)r$ -closed set and $F \subseteq A$. Then $X - A \subseteq X - F$. Since X - A is rg- (τ_1, τ_2) -closed and X - F is $(\tau_1, \tau_2)r$ -open, $\tau_1\tau_2$ -Cl $(X - A) \subseteq X - F$. Thus, $X - \tau_1\tau_2$ -Int(A) = $\tau_1\tau_2$ -Cl $(X - A) \subseteq X - F$ and hence $F \subseteq \tau_1\tau_2$ -Int(A).

Conversely, let $X - A \subseteq U$ and U be $(\tau_1, \tau_2)r$ -open. Then $X - U \subseteq A$. Since A is rg- (τ_1, τ_2) -open and X - U is $(\tau_1, \tau_2)r$ -closed, $X - U \subseteq \tau_1\tau_2$ -Int(A). This implies that $\tau_1\tau_2$ -Cl $(X - A) = X - \tau_1\tau_2$ -Int $(A) \subseteq U$. Thus X - A is rg- (τ_1, τ_2) -closed and hence A is rg- (τ_1, τ_2) -open.

Theorem 3.8. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. If A is $rg(\tau_1, \tau_2)$ -closed in X, then W = X whenever W is (τ_1, τ_2) -open and $\tau_1\tau_2$ -Int $(A) \cup (X - A) \subseteq W$.

Proof. Suppose that A is $rg(\tau_1, \tau_2)$ -closed in X. Let W be a (τ_1, τ_2) r-open set and $\tau_1\tau_2$ -Int $(A) \cup (X - A) \subseteq W$. Then $X - W \subseteq [X - \tau_1\tau_2$ -Int $(A)] \cap A$ and hence $X - W \subseteq [X - \tau_1\tau_2$ -Int $(A)] - (X - A) = \tau_1\tau_2$ -Cl(X - A) - (X - A). Since X - W is (τ_1, τ_2) r-closed and X - A is $rg(\tau_1, \tau_2)$ -closed, by Theorem 3.3, $X - W = \emptyset$. Consequently, X = W.

Theorem 3.9. Let (X, τ_1, τ_2) be a bitopological space and let $A \subseteq X$. If A is $rg(\tau_1, \tau_2)$ -closed in X, then $\tau_1\tau_2$ -Cl(A) – A is $rg(\tau_1, \tau_2)$ -open.

On regular generalized (τ_1, τ_2) -closed sets

Proof. Suppose that A is $rg(\tau_1, \tau_2)$ -closed. Let F be a $(\tau_1, \tau_2)r$ -closed set and let $F \subseteq \tau_1\tau_2$ -Cl(A) – A. Then, by Theorem 3.3, $F = \emptyset$ and hence

$$F \subseteq \tau_1 \tau_2$$
-Int $(\tau_1 \tau_2$ -Cl $(A) - A)$.

By Theorem 3.7, $\tau_1 \tau_2$ -Cl(A) – A is rg- $(\tau_1, \tau_2)r$ -open.

Definition 3.10. A bitopological space (X, τ_1, τ_2) is called (τ_1, τ_2) - $T_{\frac{1}{2}}^{\star}$ if every rg- (τ_1, τ_2) -closed set of X is $\tau_1\tau_2$ -closed.

Theorem 3.11. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{2}}^{\star}$ if and only if every singleton of X is (τ_1, τ_2) r-closed or $\tau_1 \tau_2$ -open.

Proof. Suppose that (X, τ_1, τ_2) is $(\tau_1, \tau_2) - T_{\frac{1}{2}}^{\star}$. Let $x \in X$. If $\{x\}$ is not $(\tau_1, \tau_2)r$ -closed, then $X - \{x\}$ is not $(\tau_1, \tau_2)r$ -open and hence X is the only $(\tau_1, \tau_2)r$ -open set containing $X - \{x\}$. Thus $X - \{x\}$ is $rg - (\tau_1, \tau_2)$ -closed. By the hypothesis, $X - \{x\}$ is $\tau_1 \tau_2$ -closed and so $\{x\}$ is $\tau_1 \tau_2$ -open.

Conversely, suppose that every singleton of X is $(\tau_1, \tau_2)r$ -closed or $\tau_1\tau_2$ open. Let A be a rg- (τ_1, τ_2) -closed set of X and $x \in \tau_1\tau_2$ -Cl(A). If $\{x\}$ is $\tau_1\tau_2$ -open, then $\{x\} \cap A \neq \emptyset$. Therefore, $x \in A$. If $\{x\}$ is $r(\tau_1, \tau_2)$ -closed, it follows from Theorem 3.3 that $x \notin \tau_1\tau_2$ -Cl(A) – A and so $x \in A$. Thus in the both cases, $x \in A$ and hence A is $\tau_1\tau_2$ -closed. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{2}}^{\star}$.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, M. Thongmoon, Some properties of generalized (Λ, α) closed sets, Int. J. Anal. Appl., **21**, (2023), 88.
- [2] C. Boonpok, N. Srisarakham, Properties of generalized $\delta p(\Lambda, s)$ -closed sets, Eur. J. Pure Appl. Math., **16**, no. 4, (2023), 2581–2596.
- [3] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [4] C. Boonpok, C. Viriyapong, On generalized (Λ, sp) -closed sets, Eur. J. Pure Appl. Math., **15**, no. 4, (2022), 2127–2140.
- [5] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, **6**, (2020), e05367.
- [6] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [7] A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96, (2002), 351–357.
- [8] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized closed sets in bigeneralized topological spaces, Int. J. Math. Anal., 5, no. 24, (2011), 1175–1184.
- [9] W. Dunham, N. Levine, Further results on generalized closed sets, Kyungpook Math. J., 20, (1980), 169–175.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, (1970), 89–96.
- [11] T. Noiri, V. Popa, A note on modifications of rg-closed sets in topological spaces, CUBO Math. J., 15, no. 2, (2013), 65–69.
- [12] T. Noiri, B. Roy, Unification of generalized open sets on topological spaces, Acta Math. Hungar., 130, no. 4, (2011), 349–357.
- [13] N. Palaniappan, K. Chandrasekhara Rao, Regular generalized closed sets, Kyungpook Math. J., 33, no. 2, (1993), 211–219.

- [14] B. Roy, Unification of almost regular, almost normal and mildly normal topological spaces, Demonstratio Math., 45, no. 4, (2012), 963–974.
- [15] C. Viriyapong, C. Boonpok, On generalized (Λ, p) -closed sets, Int. J. Math. Comput. Sci., **18**, no. 1, (2023), 79–83.
- [16] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.