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Abstract

In this paper, we deal with the notion of (τ1, τ2)-R1 bitopological
spaces. Moreover, some characterizations of (τ1, τ2)-R1 bitopological
spaces are investigated.

1 Introduction

Davis [7] introduced the notion of a separation axiom called R1. Shanin [18]
studied the notion of R0 topological spaces. These notions are further in-
vestigated by Naimpally [16], Dube [11] and Dorsett [8]. Murdeshwar and
Naimpally [15] and Dube [10] studied some properties of the class of R1 topo-
logical spaces. As natural generalizations of the separations axioms R0 and
R1, the notions of semi-R0 and semi-R1 spaces were introduced and studied
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by Maheshwari and Prasad [14] and Dorsett [9]. Caldas et al. [6] introduced
and studied two new weak separation axioms called Λθ-R0 and Λθ-R1 by using
the notions of (Λ, θ)-open sets and the (Λ, θ)-closure operator. Cammaroto
and Noiri [5] defined a weak separation axiom m-R0 in m-spaces which are
equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17] in-
troduced the notion ofm-R1 spaces and investigated several characterizations
of m-R0 spaces and m-R1 spaces. Thongmoon and Boonpok [20] introduced
and studied the notion of (Λ, p)-R1 topological spaces. Furthermore, some
characterizations of sober δp(Λ, s)-R0 spaces were investigated in [19]. In
[1], the authors introduced and studied the notions of δs(Λ, s)-R0 spaces and
δs(Λ, s)-R1 spaces. Moreover, several characterizations of Λp-R0 spaces and
(Λ, s)-R0 spaces were presented in [3] and [2], respectively. In this paper, we
introduce the notion of (τ1, τ2)-R1 bitopological spaces. In particular, some
characterizations of (τ1, τ2)-R1 bitopological spaces are discussed.

2 Preliminaries

Let A be a subset of a bitopological space (X, τ1, τ2). The closure of A and
the interior of A with respect to τi are denoted by τi-Cl(A) and τi-Int(A),
respectively, for i = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is
called τ1τ2-closed [4] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed
set is called τ1τ2-open. The intersection of all τ1τ2-closed sets of X containing
A is called the τ1τ2-closure [4] of A and is denoted by τ1τ2-Cl(A). The union
of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [4] of A
and is denoted by τ1τ2-Int(A). The set ∩{G | A ⊆ G and G is τ1τ2-open} is
called the τ1τ2-kernel [4] of A and is denoted by τ1τ2-ker(A).

Lemma 2.1. [4] For subsets A,B of a bitopological space (X, τ1, τ2), the
following properties hold:

(1) A ⊆ τ1τ2-ker(A).

(2) If A ⊆ B, then τ1τ2-ker(A) ⊆ τ1τ2-ker(B).

(3) If A is τ1τ2-open, then τ1τ2-ker(A) = A.

(4) x ∈ τ1τ2-ker(A) if and only if A ∩ H 6= ∅ for every τ1τ2-closed set H
containing x.
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3 Characterizations of (τ1, τ2)-R1 spaces

In this section, we introduce the notion of (τ1, τ2)-R1 spaces. Moreover, some
characterizations of (τ1, τ2)-R1 spaces are discussed.

Definition 3.1. A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-R1 if for
each points x and y in X with τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}), there exist dis-
joint τ1τ2-open sets U and V such that τ1τ2-Cl({x}) ⊆ U and τ1τ2-Cl({y}) ⊆
V .

Definition 3.2. [12] A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-R0

if for each τ1τ2-open set U and each x ∈ U , τ1τ2-Cl({x}) ⊆ U .

Lemma 3.3. If a bitopological space (X, τ1, τ2) is (τ1, τ2)-R1, then it is (τ1, τ2)-
R0.

Proof. The proof follows from Theorem 5.1 of [17].

Lemma 3.4. [12] A bitopological space (X, τ1, τ2) is (τ1, τ2)-R0 if and only
if for each points x and y in X, τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}) implies

τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅.

Theorem 3.5. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R1 if and only if
for each points x and y in X with τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}), there exist
τ1τ2-closed sets Fx and Fy such that x ∈ Fx, y 6∈ Fx, y ∈ Fy, x 6∈ Fy and
X = Fx ∪ Fy.

Proof. Let x and y be any points in X with τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}).
There exist disjoint τ1τ2-open sets Ux and Uy such that τ1τ2-Cl({x}) ⊆ Ux

and τ1τ2-Cl({y}) ⊆ Uy. Now, put Fx = X − Uy and Fy = X − Ux. Then Fx

and Fy are τ1τ2-closed sets of X such that x ∈ Fx, y 6∈ Fx, y ∈ Fy, x 6∈ Fy

and X = Fx ∪ Fy.
Conversely, let x and y be any points inX with τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}).

Then τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅. In fact, if

z ∈ τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}),

then τ1τ2-Cl({z}) 6= τ1τ2-Cl({x}) or τ1τ2-Cl({z}) 6= τ1τ2-Cl({y}). In case
τ1τ2-Cl({z}) 6= τ1τ2-Cl({x}), by the hypothesis, there exists a τ1τ2-closed set
F such that x ∈ F and z 6∈ F . Then z ∈ τ1τ2-Cl({x}) ⊆ F . This contradicts
that z 6∈ F . In case τ1τ2-Cl({z}) 6= τ1τ2-Cl({y}), similarly, this leads to
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the contradiction. Thus τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅. By Lemma 3.4,
(X, τ1, τ2) is (τ1, τ2)-R0. By the hypothesis, there exist τ1τ2-closed sets Fx

and Fy such that x ∈ Fx, y 6∈ Fx, y ∈ Fy, x 6∈ Fy and X = Fx ∪ Fy. Put
Ux = X − Fy and Uy = X − Fx. Then Ux and Uy are τ1τ2-open sets of
X containing x and y, respectively. Since (X, τ1, τ2) is (τ1, τ2)-R0, we have
τ1τ2-Cl({x}) ⊆ Ux, τ1τ2-Cl({y}) ⊆ Uy and also Ux ∩Uy = ∅. This shows that
(X, τ1, τ2) is (τ1, τ2)-R1.

Definition 3.6. [12] Let (X, τ1, τ2) be a bitopological space and x ∈ X. Then
〈x〉(τ1,τ2) is defined by 〈x〉(τ1,τ2) = τ1τ2-Cl({x}) ∩ τ1τ2-ker({x}).

Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is
called (τ1, τ2)θ-cluster point [21] of A if τ1τ2-Cl(U)∩A 6= ∅ for every τ1τ2-open
set U containing x. The set of all (τ1, τ2)θ-cluster points of A is called the
(τ1, τ2)-closure [21] of A and is denoted by (τ1, τ2)θ-Cl(A).

Lemma 3.7. [12] A bitopological space (X, τ1, τ2) is (τ1, τ2)-R0 if and only
if 〈x〉(τ1,τ2) = τ1τ2-Cl({x}) for each x ∈ X.

Theorem 3.8. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R1 if and only if
〈x〉(τ1,τ2) = (τ1, τ2)θ-Cl({x}) for each x ∈ X.

Proof. Let (X, τ1, τ2) be (τ1, τ2)-R1. By Lemma 3.3, (X, τ1, τ2) is (τ1, τ2)-
R0 and by Lemma 3.7, 〈x〉(τ1,τ2) = τ1τ2-Cl({x}) ⊆ (τ1, τ2)θ-Cl({x}) for each
x ∈ X . Thus 〈x〉(τ1,τ2) ⊆ (τ1, τ2)θ-Cl({x}) for each x ∈ X . In order to show
the opposite inclusion, suppose that y 6∈ 〈x〉(τ1,τ2). Then 〈x〉(τ1,τ2) 6= 〈y〉(τ1,τ2).
Since (X, τ1, τ2) is (τ1, τ2)-R0, by Lemma 3.7, τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}).
Since (X, τ1, τ2) is (τ1, τ2)-R1, there exist disjoint τ1τ2-open sets U and V

such that τ1τ2-Cl({x}) ⊆ U and τ1τ2-Cl({y}) ⊆ V . Since τ1τ2-Cl(V )∩{x} ⊆
τ1τ2-Cl(V ) ∩ U = ∅, y 6∈ (τ1, τ2)θ-Cl({x}). Thus (τ1, τ2)θ-Cl({x}) ⊆ 〈x〉(τ1,τ2)
and hence (τ1, τ2)θ-Cl({x}) = 〈x〉(τ1,τ2).

Conversely, suppose that 〈x〉(τ1,τ2) = (τ1, τ2)θ-Cl({x}) for each x ∈ X .
Then 〈x〉(τ1,τ2) = (τ1, τ2)θ-Cl({x}) ⊇ τ1τ2-Cl({x}) ⊇ 〈x〉(τ1,τ2) for each x ∈ X .
By Lemma 3.7, (X, τ1, τ2) is (τ1, τ2)-R0. Suppose that

τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}).

Then by Lemma 3.4, τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅. By Lemma 3.7,
〈x〉(τ1,τ2) ∩ 〈x〉(τ1,τ2) = ∅ and hence (τ1, τ2)θ-Cl({x}) ∩ (τ1, τ2)θ-Cl({y}) = ∅.
Since y 6∈ (τ1, τ2)θ-Cl({x}), there exists a τ1τ2-open set Uy such that y ∈ Uy ⊆
τ1τ2-Cl(Uy) ⊆ X−{x}. Let Ux = X−τ1τ2-Cl(Uy). Then Ux is τ1τ2-open and
x ∈ Ux. Since (X, τ1, τ2) is (τ1, τ2)-R0, τ1τ2-Cl({y}) ⊆ Uy, τ1τ2-Cl({x}) ⊆ Ux

and Ux ∩ Uy = ∅. This shows that (X, τ1, τ2) is (τ1, τ2)-R1.
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Corollary 3.9. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R1 if and only if
τ1τ2-Cl({x}) = (τ1, τ2)θ-Cl({x}) for each x ∈ X.

Proof. Let (X, τ1, τ2) be (τ1, τ2)-R1. By Theorem 3.8, we have

τ1τ2-Cl({x}) ⊇ 〈x〉(τ1,τ2) = (τ1, τ2)θ-Cl({x}) ⊇ τ1τ2-Cl({x})

and hence τ1τ2-Cl({x}) = (τ1, τ2)θ-Cl({x}) for each x ∈ X .
Conversely, suppose that τ1τ2-Cl({x}) = (τ1, τ2)θ-Cl({x}) for each x ∈ X .

First, we show that (X, τ1, τ2) is (τ1, τ2)-R0. Let U be a τ1τ2-open set and
x ∈ U . Let y 6∈ U . Then τ1τ2-Cl({y})∩U = (τ1, τ2)θ-Cl({y})∩U = ∅. Thus
x 6∈ (τ1, τ2)θ-Cl({y}). There exists a τ1τ2-open set V such that x ∈ V and
y 6∈ τ1τ2-Cl(V ). Since τ1τ2-Cl({x}) ⊆ τ1τ2-Cl(V ), y 6∈ τ1τ2-Cl({x}). This
shows that τ1τ2-Cl({x}) ⊆ U and (X, τ1, τ2) is (τ1, τ2)-R0. By Lemma 3.7,
〈x〉(τ1,τ2) = τ1τ2-Cl({x}) = (τ1, τ2)θ-Cl({x}) for each x ∈ X and by Theorem
3.8, (X, τ1, τ2) is (τ1, τ2)-R1.
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