International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 827–832

On (τ_1, τ_2) - R_1 bitopological spaces

Butsakorn Kong-ied¹, Supannee Sompong², Chawalit Boonpok¹

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics, Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: butsakorn.k@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received December 20, 2023, Accepted February 1, 2024, Published February 12, 2024)

Abstract

In this paper, we deal with the notion of (τ_1, τ_2) - R_1 bitopological spaces. Moreover, some characterizations of (τ_1, τ_2) - R_1 bitopological spaces are investigated.

1 Introduction

Davis [7] introduced the notion of a separation axiom called R_1 . Shanin [18] studied the notion of R_0 topological spaces. These notions are further investigated by Naimpally [16], Dube [11] and Dorsett [8]. Murdeshwar and Naimpally [15] and Dube [10] studied some properties of the class of R_1 topological spaces. As natural generalizations of the separations axioms R_0 and R_1 , the notions of semi- R_0 and semi- R_1 spaces were introduced and studied

Key words and phrases: $\tau_1\tau_2$ -open set, (τ_1, τ_2) - R_1 space. AMS (MOS) Subject Classifications: 54D10, 54E55. The corresponding author is Butsakorn Kong-ied. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net by Maheshwari and Prasad [14] and Dorsett [9]. Caldas et al. [6] introduced and studied two new weak separation axioms called Λ_{θ} - R_0 and Λ_{θ} - R_1 by using the notions of (Λ, θ) -open sets and the (Λ, θ) -closure operator. Cammaroto and Noiri [5] defined a weak separation axiom m- R_0 in m-spaces which are equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17] introduced the notion of m- R_1 spaces and investigated several characterizations of m- R_0 spaces and m- R_1 spaces. Thongmoon and Boonpok [20] introduced and studied the notion of (Λ, p) - R_1 topological spaces. Furthermore, some characterizations of sober $\delta p(\Lambda, s)$ - R_0 spaces were investigated in [19]. In [1], the authors introduced and studied the notions of $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces. Moreover, several characterizations of Λ_p - R_0 spaces and (Λ, s) - R_0 spaces were presented in [3] and [2], respectively. In this paper, we introduce the notion of (τ_1, τ_2) - R_1 bitopological spaces. In particular, some characterizations of (τ_1, τ_2) - R_1 bitopological spaces. The spaces are discussed.

2 Preliminaries

Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [4] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [4] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [4] of A and is denoted by $\tau_1 \tau_2$ -Int(A). The set $\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1 \tau_2$ -open} is called the $\tau_1 \tau_2$ -kernel [4] of A and is denoted by $\tau_1 \tau_2$ -ker(A).

Lemma 2.1. [4] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -ker(A).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -ker $(A) \subseteq \tau_1 \tau_2$ -ker(B).
- (3) If A is $\tau_1\tau_2$ -open, then $\tau_1\tau_2$ -ker(A) = A.
- (4) $x \in \tau_1 \tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1 \tau_2$ -closed set H containing x.

3 Characterizations of (τ_1, τ_2) - R_1 spaces

In this section, we introduce the notion of (τ_1, τ_2) - R_1 spaces. Moreover, some characterizations of (τ_1, τ_2) - R_1 spaces are discussed.

Definition 3.1. A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - R_1 if for each points x and y in X with $\tau_1\tau_2$ - $Cl(\{x\}) \neq \tau_1\tau_2$ - $Cl(\{y\})$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $\tau_1\tau_2$ - $Cl(\{x\}) \subseteq U$ and $\tau_1\tau_2$ - $Cl(\{y\}) \subseteq V$.

Definition 3.2. [12] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - R_0 if for each $\tau_1\tau_2$ -open set U and each $x \in U$, $\tau_1\tau_2$ - $Cl(\{x\}) \subseteq U$.

Lemma 3.3. If a bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 , then it is (τ_1, τ_2) - R_0 .

Proof. The proof follows from Theorem 5.1 of [17].

Lemma 3.4. [12] A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if for each points x and y in X, $\tau_1\tau_2$ - $Cl(\{x\}) \neq \tau_1\tau_2$ - $Cl(\{y\})$ implies

$$\tau_1\tau_2 - Cl(\{x\}) \cap \tau_1\tau_2 - Cl(\{y\}) = \emptyset.$$

Theorem 3.5. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 if and only if for each points x and y in X with $\tau_1\tau_2$ - $Cl(\{x\}) \neq \tau_1\tau_2$ - $Cl(\{y\})$, there exist $\tau_1\tau_2$ -closed sets F_x and F_y such that $x \in F_x$, $y \notin F_x$, $y \in F_y$, $x \notin F_y$ and $X = F_x \cup F_y$.

Proof. Let x and y be any points in X with $\tau_1\tau_2$ -Cl({x}) $\neq \tau_1\tau_2$ -Cl({y}). There exist disjoint $\tau_1\tau_2$ -open sets U_x and U_y such that $\tau_1\tau_2$ -Cl({x}) $\subseteq U_x$ and $\tau_1\tau_2$ -Cl({y}) $\subseteq U_y$. Now, put $F_x = X - U_y$ and $F_y = X - U_x$. Then F_x and F_y are $\tau_1\tau_2$ -closed sets of X such that $x \in F_x$, $y \notin F_x$, $y \in F_y$, $x \notin F_y$ and $X = F_x \cup F_y$.

Conversely, let x and y be any points in X with $\tau_1\tau_2$ -Cl($\{x\}$) $\neq \tau_1\tau_2$ -Cl($\{y\}$). Then $\tau_1\tau_2$ -Cl($\{x\}$) $\cap \tau_1\tau_2$ -Cl($\{y\}$) = \emptyset . In fact, if

$$z \in \tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \cap \tau_1 \tau_2 \operatorname{-Cl}(\{y\}),$$

then $\tau_1\tau_2$ -Cl($\{z\}$) $\neq \tau_1\tau_2$ -Cl($\{x\}$) or $\tau_1\tau_2$ -Cl($\{z\}$) $\neq \tau_1\tau_2$ -Cl($\{y\}$). In case $\tau_1\tau_2$ -Cl($\{z\}$) $\neq \tau_1\tau_2$ -Cl($\{x\}$), by the hypothesis, there exists a $\tau_1\tau_2$ -closed set F such that $x \in F$ and $z \notin F$. Then $z \in \tau_1\tau_2$ -Cl($\{x\}$) $\subseteq F$. This contradicts that $z \notin F$. In case $\tau_1\tau_2$ -Cl($\{z\}$) $\neq \tau_1\tau_2$ -Cl($\{z\}$), similarly, this leads to

the contradiction. Thus $\tau_1\tau_2$ -Cl($\{x\}$) $\cap \tau_1\tau_2$ -Cl($\{y\}$) = \emptyset . By Lemma 3.4, (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 . By the hypothesis, there exist $\tau_1\tau_2$ -closed sets F_x and F_y such that $x \in F_x$, $y \notin F_x$, $y \in F_y$, $x \notin F_y$ and $X = F_x \cup F_y$. Put $U_x = X - F_y$ and $U_y = X - F_x$. Then U_x and U_y are $\tau_1\tau_2$ -open sets of X containing x and y, respectively. Since (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 , we have $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq U_x, \tau_1\tau_2$ -Cl($\{y\}$) $\subseteq U_y$ and also $U_x \cap U_y = \emptyset$. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 .

Definition 3.6. [12] Let (X, τ_1, τ_2) be a bitopological space and $x \in X$. Then $\langle x \rangle_{(\tau_1, \tau_2)}$ is defined by $\langle x \rangle_{(\tau_1, \tau_2)} = \tau_1 \tau_2 - Cl(\{x\}) \cap \tau_1 \tau_2 - ker(\{x\})$.

Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called $(\tau_1, \tau_2)\theta$ -cluster point [21] of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the (τ_1, τ_2) -closure [21] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A).

Lemma 3.7. [12] A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if $\langle x \rangle_{(\tau_1, \tau_2)} = \tau_1 \tau_2$ - $Cl(\{x\})$ for each $x \in X$.

Theorem 3.8. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 if and only if $\langle x \rangle_{(\tau_1, \tau_2)} = (\tau_1, \tau_2)\theta$ - $Cl(\{x\})$ for each $x \in X$.

Proof. Let (X, τ_1, τ_2) be (τ_1, τ_2) - R_1 . By Lemma 3.3, (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 and by Lemma 3.7, $\langle x \rangle_{(\tau_1, \tau_2)} = \tau_1 \tau_2$ -Cl($\{x\}$) $\subseteq (\tau_1, \tau_2)\theta$ -Cl($\{x\}$) for each $x \in X$. In order to show the opposite inclusion, suppose that $y \notin \langle x \rangle_{(\tau_1, \tau_2)}$. Then $\langle x \rangle_{(\tau_1, \tau_2)} \neq \langle y \rangle_{(\tau_1, \tau_2)}$. Since (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 , by Lemma 3.7, $\tau_1 \tau_2$ -Cl($\{x\}$) $\neq \tau_1 \tau_2$ -Cl($\{y\}$). Since (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 , there exist disjoint $\tau_1 \tau_2$ -open sets U and V such that $\tau_1 \tau_2$ -Cl($\{x\}$) $\subseteq U$ and $\tau_1 \tau_2$ -Cl($\{y\}$) $\subseteq V$. Since $\tau_1 \tau_2$ -Cl($\{x\}$) $\subseteq \langle x \rangle_{(\tau_1, \tau_2)}$ and hence $(\tau_1, \tau_2)\theta$ -Cl($\{x\}$) $= \langle x \rangle_{(\tau_1, \tau_2)}$.

Conversely, suppose that $\langle x \rangle_{(\tau_1,\tau_2)} = (\tau_1,\tau_2)\theta$ -Cl($\{x\}$) for each $x \in X$. Then $\langle x \rangle_{(\tau_1,\tau_2)} = (\tau_1,\tau_2)\theta$ -Cl($\{x\}$) $\supseteq \tau_1\tau_2$ -Cl($\{x\}$) $\supseteq \langle x \rangle_{(\tau_1,\tau_2)}$ for each $x \in X$. By Lemma 3.7, (X,τ_1,τ_2) is (τ_1,τ_2) -R₀. Suppose that

 $\tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \neq \tau_1 \tau_2 \operatorname{-Cl}(\{y\}).$

Then by Lemma 3.4, $\tau_1\tau_2$ -Cl($\{x\}$) $\cap \tau_1\tau_2$ -Cl($\{y\}$) = \emptyset . By Lemma 3.7, $\langle x \rangle_{(\tau_1,\tau_2)} \cap \langle x \rangle_{(\tau_1,\tau_2)} = \emptyset$ and hence $(\tau_1,\tau_2)\theta$ -Cl($\{x\}$) $\cap (\tau_1,\tau_2)\theta$ -Cl($\{y\}$) = \emptyset . Since $y \notin (\tau_1,\tau_2)\theta$ -Cl($\{x\}$), there exists a $\tau_1\tau_2$ -open set U_y such that $y \in U_y \subseteq \tau_1\tau_2$ -Cl(U_y) $\subseteq X - \{x\}$. Let $U_x = X - \tau_1\tau_2$ -Cl(U_y). Then U_x is $\tau_1\tau_2$ -open and $x \in U_x$. Since (X,τ_1,τ_2) is (τ_1,τ_2) - R_0 , $\tau_1\tau_2$ -Cl($\{y\}$) $\subseteq U_y$, $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq U_x$ and $U_x \cap U_y = \emptyset$. This shows that (X,τ_1,τ_2) is (τ_1,τ_2) - R_1 . On (τ_1, τ_2) -R₁ bitopological spaces

Corollary 3.9. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 if and only if $\tau_1 \tau_2$ - $Cl(\{x\}) = (\tau_1, \tau_2)\theta$ - $Cl(\{x\})$ for each $x \in X$.

Proof. Let (X, τ_1, τ_2) be (τ_1, τ_2) - R_1 . By Theorem 3.8, we have

$$\tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \supseteq \langle x \rangle_{(\tau_1, \tau_2)} = (\tau_1, \tau_2) \theta \operatorname{-Cl}(\{x\}) \supseteq \tau_1 \tau_2 \operatorname{-Cl}(\{x\})$$

and hence $\tau_1\tau_2$ -Cl($\{x\}$) = $(\tau_1, \tau_2)\theta$ -Cl($\{x\}$) for each $x \in X$.

Conversely, suppose that $\tau_1\tau_2$ -Cl($\{x\}$) = $(\tau_1, \tau_2)\theta$ -Cl($\{x\}$) for each $x \in X$. First, we show that (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 . Let U be a $\tau_1\tau_2$ -open set and $x \in U$. Let $y \notin U$. Then $\tau_1\tau_2$ -Cl($\{y\}$) $\cap U = (\tau_1, \tau_2)\theta$ -Cl($\{y\}$) $\cap U = \emptyset$. Thus $x \notin (\tau_1, \tau_2)\theta$ -Cl($\{y\}$). There exists a $\tau_1\tau_2$ -open set V such that $x \in V$ and $y \notin \tau_1\tau_2$ -Cl(V). Since $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq \tau_1\tau_2$ -Cl(V), $y \notin \tau_1\tau_2$ -Cl($\{x\}$). This shows that $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq U$ and (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 . By Lemma 3.7, $\langle x \rangle_{(\tau_1, \tau_2)} = \tau_1\tau_2$ -Cl($\{x\}$) = $(\tau_1, \tau_2)\theta$ -Cl($\{x\}$) for each $x \in X$ and by Theorem 3.8, (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 .

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] C. Boonpok, J. Khampakdee, $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces, Int. J. Anal. Appl., **21**, (2023), 99.
- [2] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math., 16, no. 1, (2023), 336–362.
- [3] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15, no. 2, (2022), 415– 436.
- [4] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [5] F. Cammaroto, T. Noiri, On Λ_m -sets and related topological spaces, Acta Math. Hungar., **109**, (2005), 261–279.
- [6] M. Caldas, S. Jafari, T. Noiri, Characterizations of Λ_{θ} - R_0 and Λ_{θ} - R_1 topological spaces, Acta Math. Hungar., **103**, (2004), 85–95.

- [7] A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68, (1961), 886–893.
- [8] C. Dorsett, R_0 and R_1 topological spaces, Mat. Vesnik, **15**, (1978), 117–122, (30).
- [9] C. Dorsett, Semi- T_2 , semi- R_1 and semi- R_0 topological spaces, Ann. Soc. Sci. Bruxelles, **92**, (1978), 143–150.
- [10] K. K. Dube, A note on R_1 topological spaces, Period Math. Hungar., 13, no. 4, (1982), 267–271.
- [11] K. K. Dube, A note on R_0 topological spaces, Mat. Vesnik, **11**, (1974), 203–208, (26).
- [12] B. Kong-ied, S. Sompong, C. Boonpok, On (τ_1, τ_2) - R_0 bitopological spaces, (submitted).
- [13] S. Lugojan, Generalized topology, Stud. Cerc. Mat., 34, (1982), 348– 360.
- [14] S. N. Maheshwari, R. Prasad, On $(R_0)_s$ -spaces, Portug. Math., **34**, (1975), 213–217.
- [15] M. G. Murdeshwar, S. A. Naimpally, R₁-topological spaces, Canad. Math. Bull., 9, (1966), 521–523.
- [16] S. A. Naimpally, On R_0 topological spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math., **10**, (1967), 53–54.
- [17] T. Noiri, Unified characterizations for modifications of R_0 and R_1 topological spaces, Rend. Circ. Mat. Palermo (2), **60**, (2006), 29–42.
- [18] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38, (1943), 110–113.
- [19] M. Thongmoon, C. Boonpok, Sober $\delta p(\Lambda, s)$ - R_0 spaces, Int. J. Math. Comput. Sci., **18**, no. 4, (2023), 761–765.
- [20] M. Thongmoon, C. Boonpok, Characterizations of (Λ, p) - R_1 topological spaces, Int. J. Math. Comput. Sci., **18**, no. 1, (2023), 99–103.
- [21] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.