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Abstract

A positive integer n is called a t−co-cobalancing number if n is a
solution of the equation 1+2+3+· · ·+(n+1) = (n+1+t)+(n+2+t)+
· · ·+(n+ r+ t) for some positive integer r and fixed positive integer t.
In this paper, we present a function and recurrence relations for t−co-
cobalancing numbers. Moreover, we give some interesting properties
of t−co-cobalancing numbers.

1 Introduction

In 1999, Behera and Panda [1] defined a balancing number as follows:
A positive integer n is called balancing number if

1 + 2 + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ (n+ r) (1.1)

for some positive integer r which is called the balancer corresponding to the
balancing number n.

In 2005, Panda and Ray [2] defined a cobalancing number n ∈ Z
+ by

1 + 2 + · · ·+ n = (n+ 1) + (n + 2) + · · ·+ (n+ r) (1.2)
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for some positive integer r which is called cobalancer corresponding to the
balancing number n.

Later in 2012, Dash and Ota [3] studied t−balancing numbers. A positive
integer n is called a t−balancing number if

1 + 2 + · · ·+ n = (n + 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t) (1.3)

for some positive integer r which is called the t−balancer.

In 2021, Pakapongpun and Chattae [4] modified (1.1) and (1.2) slightly
and called n ∈ Z

+ a co-cobalancing number if

1 + 2 + · · ·+ (n+ 1) = (n+ 1) + (n + 2) + · · ·+ (n+ r) (1.4)

for some positive integer r which is called the co-cobalancer.

The purpose of this paper is to present the notion of the t−co-cobalancing
number, a function and recurrence relation for them and to give some of their
interesting properties.

2 Preliminary Notes

Definition 2.1. Let d be a positive integer that is not a perfect square. The
Pell equation is a Diophantine equation of the form x2 − dy2 = 1 (More
details in [5]).

Theorem 2.2. [8] Let (x1, y1) be the least positive solution of the Diophan-
tine equation x2 − dy2 = 1, where d is a positive integer that is not a square.
Then all positive solutions (xk, yk) are given by

xk + yk
√
d = (x1 + y1

√
d)k

for k = 1, 2, 3, · · ·

Theorem 2.3. If d is a positive integer that is not a perfect square, then
equation x2 − dy2 = 1 has infinitely many solutions in positive integers, and
the general solution is given by (xn, yn) and n ≥ 0,

xn+1 = x1xn + dy1yn and yn+1 = y1xn + x1yn,

where (x1, y1) is its fundamental solution; i.e., the minimal solution different
from (1, 0) (More details in [6]).
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Theorem 2.4. [7](Brahmagupta’s Lemma)
If (x1, y1) is a solution of dx2+m1 = y2 and (x2, y2) is a solution of dx2+m2 =
y2, then (x1y2+x2y1, y1y2+dx1x2) and (x1y2−x2y1, dx1x2−y1y2) are solutions
of dx2 +m1m2 = y2.

3 Main Results

A positive integer n is called a t−co-cobalancing number if

1 + 2 + · · ·+ (n+ 1) = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t) (3.5)

for some positive integer r which is called the t−co-cobalancer. The following
are some examples of t−co-cobalancing number for different values of t:
5, 34, 203, 1188, 6929 are 0-co-cobalancing numbers with 0-co-cobalancers 3, 5, 85, 493, 2871
respectively. 1, 13, 83, 491, 2869 are 1-co-cobalancing numbers with 1-co-
cobalancers 1, 6, 35, 204, 1189, respectively.
4, 33, 202, 1187, 6828 are 2-co-cobalancing numbers with 2-co-cobalancers 2, 14, 8, 492, 2870,
respectively.
2, 7, 24, 53, 152 are 3-co-cobalancing numbers with 3-co-cobalancers 1, 3, 10, 22, 63,
respectively.
5, 10, 44, 73, 271 are 4-co-cobalancing numbers with 4-co-cobalancers 2, 4, 18, 30, 112,
respectively.
8, 13, 64, 93, 390 are 5-co-cobalancing numbers with 5-co-cobalancers 3, 5, 26, 38, 16,
respectively.
From the equation (3.5), we get

n =
1

2

[

(2r − 3) +
√
8r2 + 8rt− 8r + 1

]

. (3.6)

Thus r is a t−co-cobalancer number if and only if 8r2 + 8rt − 8r + 1 is a
perfect square.
Let y =

√
8r2 + 8rt− 8r + 1. Then y2 = 8r2 + 8rt− 8r + 1. Arranging this,

we get 2(2r + t− 1)2 − y2 = 2t2 − 4t+ 1.
Put x = 2r + t− 1. Hence

2x2 − y2 = 2t2 − 4t+ 1. (3.7)

The least positive integer solution of (3.7) is x1 = t− 1 and y1 = 1. To find
the other solutions of (3.7), consider the Pell equation

y2 − 2x2 = 1 (3.8)
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whose fundamental solution is x1 = 2 and y1 = 3. The other solutions of
(3.8) can be derived from the relations xn = gn

2
√
2
and yn = fn

2
, where

fn = (3 + 2
√
2)n + (3− 2

√
2)n and gn = (3 + 2

√
2)n − (3− 2

√
2)n.

Hence

xn =
1

2
√
2

[

(3 + 2
√
2)n − (3− 2

√
2)n

]

yn =
1

2

[

(3 + 2
√
2)n + (3− 2

√
2)n

]

, n = 1, 2, 3 · · · .
(3.9)

This shows that both xn and yn are positive. Therefore, the following two sets
of expressions for xn and yn satisfy Brahmagupta’s lemma between (x1, y1)
and (xn, yn.) The other solutions of (3.7) can be obtained from the relations:

xn = x1yn + y1xn = (t− 1)yn + xn, yn = y1yn + dx1xn = yn + 2(t− 1)xn,

x′
n = x1yn − y1xn = (t− 1)yn − xn, y′n = dx1xn − y1yn = 2(t− 1)xn − yn.

Substituting xn, yn of (3.9) into the above equations, we get

2
√
2xn = (3 + 2

√
2)n(

√
2(t− 1) + 1) + (3− 2

√
2)n(

√
2(t− 1)− 1),

2
√
2yn = (3 + 2

√
2)n(2(t− 1) +

√
2)− (3− 2

√
2)n(2(t− 1)−

√
2),

2
√
2x′

n = (3 + 2
√
2)n(

√
2(t− 1)− 1) + (3− 2

√
2)n(

√
2(t− 1) + 1),

2
√
2y′n = (3 + 2

√
2)n(2(t− 1)−

√
2)− (3− 2

√
2)n(2(t− 1) +

√
2).

Now, we have obtained two sequences of xn, yn and x′
n, y

′
n which we can use

to get the recurrence relations of xn, yn and x′
n, y

′
n,

xn = 6xn−1 − xn−2, yn = 6yn−1 − yn−2,

x′
n = 6xn−1 − xn−2, y′n = 6yn−1 − yn−2.

We denote the nth t−co-cobalancing number by B
t

n. From (3.6) and xn, yn, x
′
n, y

′
n

we have

B
t

n =
1

2

[

(2r − 3) +
√
8r2 + 8rt− 8r + 1

]

and

y = yn = y′n =
√
8r2 + 8rt− 8r + 1, x = xn = x′

n = 2r + t− 1.

Hence

B
t

n =
1

2

[

(2r − 3) + xn + yn − 2r − t+ 1
]

=
1

2

[

xn + yn − (t + 2)
]

, t ≥ 3

which is the generalized recurrence relation of t−co-cobalancing numbers.



t−Co-cobalancing Numbers 531

3.1 Properties of t−co-cobalancing numbers

We reduce equation (3.5) to

r2 + r(2n+ 2t + 1)− (n2 + 3n+ 2) = 0.

n is a t−co-cobalancing number if and only if 8n2 + 8n(t+2) + (2t+ 1)2 +8
is a perfect square. Consider the function

F (x) = 3x+ (t+ 2) +
√

8x2 + 8x(t + 2) + (2t+ 1)2 + 8.

We will show that for any t−co-cobalancing number x, F (x) is a t−co-
cobalancing number.

Theorem 3.1. If x is a t−co-cobalancing number, then

F (x) = 3x+ (t + 2) +
√

8x2 + 8x(t+ 2) + (2t+ 1)2 + 8

is also a t−co-cobalancing number.

Proof. Let F (x) = u. Thus x < u and

x = 3u+ (t+ 2)−
√

8u2 + 8u(t+ 2) + (2t+ 1)2 + 8.

Since x is a t−co-cobalancing number, 8u2+8u(t+2)+(2t+1)2+8 is a perfect
square. This implies that u is a t−co-cobalancing number and F (x) = u.

Therefore, F (x) is a t−co-cobalancing number.

Theorem 3.2. Let B
t

n be the nth t−co-cobalancing number. If x = B
t

n, then

B
t

n+2 = F (x) = 3x+ (t+ 2) +
√

8x2 + 8x(t+ 2) + (2t+ 1)2 + 8

and

B
t

n−2 = F (x) = 3x+ (t+ 2)−
√

8x2 + 8x(t+ 2) + (2t+ 1)2 + 8.

Proof. Define a function F : [−1,∞) → [3t− 2,∞) by

F (x) = 3x+ (t+ 2) +
√

8x2 + 8x(t + 2) + (2t+ 1)2 + 8.

It is clear that x < F (x). Since

F ′(x) = 3 +
4(2x+ t+ 2)

√

8x2 + 8x(t + 2) + (2t+ 1)2 + 8
> 0,
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F is a strictly increasing function. Hence F is one to one and x < F (x), x ≥
−1. Thus F−1 exists and is also strictly increasing with F−1(x) < x. Since

F−1(x) = 3x+ (t+ 2)−
√

8x2 + 8x(t+ 2) + (2t+ 1)2 + 8,

8(F−1(x))2 + 8(F−1(x))(t + 2) + (2t+ 1)2 + 8

=
[

3
√

8x2 + 8x(t + 2) + (2t+ 1)2 + 8− 8x− 4(t+ 2)
]2
.

It follows that F−1(x) is also a t−co-cobalancing number. Next, we will prove
the remaining part by mathematical induction.

The first three t−co-cobalancing numbers of one of the sequences are
c1 = 3t − 7, c2 = 20t − 36, c3 = 119t − 205 which generate the odd termed
t−co-cobalancing numbers and the first three t−co-cobalancing numbers of
the other sequences are c1 = 3t−2, c2 = 20t−7, c3 = 119t−2 which generate
the even termed t−co-cobalancing numbers. We know that F (c1) = c2 and
F (c2) = c3. Assume that Hk is the hypothesis that there is no even (or odd)
t−co-cobalancing number between xn−1 and xn for n = 1, 2, · · · , k. We will
prove that Hk+1 is true; i.e., there is no t−co-cobalancing number y such that
xk < y < xk+1. Assume to the contrary that there exists a t−co-cobalancing
number y between xk < y < xk+1. It follows that F−1(xk) < F−1(y) <

F−1(xk+1) but F−1(xk) = xk−1 and F−1(xk+1) = xk thus xk−1 < F−1(y) <
xk. Since y and F−1(y) are t−co-cobalancing numbers, there exists a t−co-
cobalancing number between xk−1 and xk which is a contradiction. So Hk+1

is true. Therefore, there is no t−co-cobalancing number between xk−1 and
xk.

From the theorem 3.2, if Bn

t
= x is an even (or odd) term t−co-cobalancing

number, then the next even (or odd) term t−co-cobalancing number is

B
t

n+2 = 3B
t

n + (t+ 2) +

√

8(B
t

n)
2 + 8B

t

n(t+ 2) + (2t+ 1)2 + 8

and the previous even (or odd) term t−co-cobalancing number is

B
t

n−2 = 3B
t

n + (t + 2)−
√

8(B
t

n)
2 + 8B

t

n(t+ 2) + (2t+ 1)2 + 8.

Then
B

t

n+2 = 6B
t

n −B
t

n−2 + 2(t+ 2), t ≥ 3.

Hence
B

t

n = 6B
t

n−2 − B
t

n−4 + 2(t+ 2). (3.10)
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Theorem 3.3. If B
t

n is the nth t−co-cobalancing number, then
[

B
t

n − (t + 2)

]2

−B
t

n+2 ·B
t

n−2 = (2t+ 1)2 + 8.

Proof. From equation (3.10), we have

B
t

n+2 = 6B
t

n − B
t

n−2 + 2(t+ 2).

Thus
B

t

n+2 +B
t

n−2 − 2(t+ 2)

B
t

n

= 6 (3.11)

and
B

t

n +B
t

n−4 − 2(t+ 2)

B
t

n−2

= 6. (3.12)

From equations (3.11) and (3.12), we get

(B
t

n)
2 +B

t

n · B
t

n−4 − 2B
t

n(t + 2)

= (B
t

n−2)
2 +B

t

n+2 · B
t

n−2 − 2B
t

n−2(t + 2).

Hence
[

B
t

n − (t+ 2)

]2

−B
t

n+2 · B
t

n−2 =

[

B
t

n−2 − (t+ 2)

]2

− B
t

n · B
t

n−4.

Similarly,
[

B
t

n−2 − (t+ 2)

]2

−B
t

n · B
t

n−4 =

[

B
t

n−4 − (t+ 2)

]2

−B
t

n−2 · B
t

n−6.

Continuing in the same way, we get

[B
t

n − (t + 2)]
2

− B
t

n+2 · B
t

n−2 =

{

[B
t

3 − (t + 2)]
2

− B
t

5 · B
t

1 if n is odd

[B
t

4 − (t+ 2)]
2

−B
t

6 · B
t

2 if n is even.

We know that B
t

1 = 3t − 7, B
t

3 = 20t − 36, B
t

5 = 119t − 205 and B
t

2 =

3t− 2, B
t

4 = 20t− 7, B
t

6 = 119t− 2.
Substituting these values in both cases, we have

[

B
t

n − (t + 2)

]2

−B
t

n+2 ·B
t

n−2 = (2t+ 1)2 + 8.
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