t-Co-cobalancing Numbers

Apisit Pakapongpun, Bunthita Chattae

Department of Mathematics
Faculty of Science
Burapha University
Chonburi 20131, Thailand
email: apisit.buu@gmail.com, bunthita@buu.ac.th
(Received May 8, 2023, Accepted November 10, 2023, Published February 12, 2024)

Abstract

A positive integer n is called a t-co-cobalancing number if n is a solution of the equation $1+2+3+\cdots+(n+1)=(n+1+t)+(n+2+t)+$ $\cdots+(n+r+t)$ for some positive integer r and fixed positive integer t. In this paper, we present a function and recurrence relations for $t-\mathrm{co}-$ cobalancing numbers. Moreover, we give some interesting properties of t-co-cobalancing numbers.

1 Introduction

In 1999, Behera and Panda [1] defined a balancing number as follows: A positive integer n is called balancing number if

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r) \tag{1.1}
\end{equation*}
$$

for some positive integer r which is called the balancer corresponding to the balancing number n.

In 2005, Panda and Ray [2] defined a cobalancing number $n \in \mathbb{Z}^{+}$by

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r) \tag{1.2}
\end{equation*}
$$

Key words and phrases: t-Co-cobalancing number, t-Balancing number, Recurrence relations.
AMS (MOS) Subject Classifications: 11B37, 11D25.
The corresponding author is Bunthita Chattae.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
for some positive integer r which is called cobalancer corresponding to the balancing number n.

Later in 2012, Dash and Ota [3] studied t-balancing numbers. A positive integer n is called a t-balancing number if

$$
\begin{equation*}
1+2+\cdots+n=(n+1+t)+(n+2+t)+\cdots+(n+r+t) \tag{1.3}
\end{equation*}
$$

for some positive integer r which is called the t-balancer.
In 2021, Pakapongpun and Chattae [4] modified (1.1) and (1.2) slightly and called $n \in \mathbb{Z}^{+}$a co-cobalancing number if

$$
\begin{equation*}
1+2+\cdots+(n+1)=(n+1)+(n+2)+\cdots+(n+r) \tag{1.4}
\end{equation*}
$$

for some positive integer r which is called the co-cobalancer.
The purpose of this paper is to present the notion of the t-co-cobalancing number, a function and recurrence relation for them and to give some of their interesting properties.

2 Preliminary Notes

Definition 2.1. Let d be a positive integer that is not a perfect square. The Pell equation is a Diophantine equation of the form $x^{2}-d y^{2}=1$ (More details in [5]).

Theorem 2.2. [8] Let $\left(x_{1}, y_{1}\right)$ be the least positive solution of the Diophantine equation $x^{2}-d y^{2}=1$, where d is a positive integer that is not a square. Then all positive solutions $\left(x_{k}, y_{k}\right)$ are given by

$$
x_{k}+y_{k} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{k}
$$

for $k=1,2,3, \cdots$
Theorem 2.3. If d is a positive integer that is not a perfect square, then equation $x^{2}-d y^{2}=1$ has infinitely many solutions in positive integers, and the general solution is given by $\left(x_{n}, y_{n}\right)$ and $n \geq 0$,

$$
x_{n+1}=x_{1} x_{n}+d y_{1} y_{n} \text { and } y_{n+1}=y_{1} x_{n}+x_{1} y_{n},
$$

where $\left(x_{1}, y_{1}\right)$ is its fundamental solution; i.e., the minimal solution different from (1,0) (More details in [6]).
t-Co-cobalancing Numbers

Theorem 2.4. [7](Brahmagupta's Lemma)
If $\left(x_{1}, y_{1}\right)$ is a solution of $d x^{2}+m_{1}=y^{2}$ and $\left(x_{2}, y_{2}\right)$ is a solution of $d x^{2}+m_{2}=$ y^{2}, then $\left(x_{1} y_{2}+x_{2} y_{1}, y_{1} y_{2}+d x_{1} x_{2}\right)$ and $\left(x_{1} y_{2}-x_{2} y_{1}, d x_{1} x_{2}-y_{1} y_{2}\right)$ are solutions of $d x^{2}+m_{1} m_{2}=y^{2}$.

3 Main Results

A positive integer n is called a t-co-cobalancing number if

$$
\begin{equation*}
1+2+\cdots+(n+1)=(n+1+t)+(n+2+t)+\cdots+(n+r+t) \tag{3.5}
\end{equation*}
$$

for some positive integer r which is called the t-co-cobalancer. The following are some examples of t-co-cobalancing number for different values of t : $5,34,203,1188,6929$ are 0 -co-cobalancing numbers with 0 -co-cobalancers $3,5,85,493,2871$ respectively. $1,13,83,491,2869$ are 1-co-cobalancing numbers with 1-cocobalancers $1,6,35,204,1189$, respectively.
$4,33,202,1187,6828$ are 2-co-cobalancing numbers with 2-co-cobalancers 2, 14, 8, 492, 2870, respectively.
$2,7,24,53,152$ are 3 -co-cobalancing numbers with 3 -co-cobalancers $1,3,10,22,63$, respectively.
$5,10,44,73,271$ are 4 -co-cobalancing numbers with 4 -co-cobalancers $2,4,18,30,112$, respectively.
$8,13,64,93,390$ are 5 -co-cobalancing numbers with 5 -co-cobalancers $3,5,26,38,16$, respectively.
From the equation (3.5), we get

$$
\begin{equation*}
n=\frac{1}{2}\left[(2 r-3)+\sqrt{8 r^{2}+8 r t-8 r+1}\right] . \tag{3.6}
\end{equation*}
$$

Thus r is a t-co-cobalancer number if and only if $8 r^{2}+8 r t-8 r+1$ is a perfect square.
Let $y=\sqrt{8 r^{2}+8 r t-8 r+1}$. Then $y^{2}=8 r^{2}+8 r t-8 r+1$. Arranging this, we get $2(2 r+t-1)^{2}-y^{2}=2 t^{2}-4 t+1$.
Put $x=2 r+t-1$. Hence

$$
\begin{equation*}
2 x^{2}-y^{2}=2 t^{2}-4 t+1 \tag{3.7}
\end{equation*}
$$

The least positive integer solution of (3.7) is $x_{1}=t-1$ and $y_{1}=1$. To find the other solutions of (3.7), consider the Pell equation

$$
\begin{equation*}
y^{2}-2 x^{2}=1 \tag{3.8}
\end{equation*}
$$

whose fundamental solution is $\bar{x}_{1}=2$ and $\bar{y}_{1}=3$. The other solutions of (3.8) can be derived from the relations $\bar{x}_{n}=\frac{g_{n}}{2 \sqrt{2}}$ and $\bar{y}_{n}=\frac{f_{n}}{2}$, where

$$
f_{n}=(3+2 \sqrt{2})^{n}+(3-2 \sqrt{2})^{n} \text { and } g_{n}=(3+2 \sqrt{2})^{n}-(3-2 \sqrt{2})^{n} .
$$

Hence

$$
\begin{align*}
& \bar{x}_{n}=\frac{1}{2 \sqrt{2}}\left[(3+2 \sqrt{2})^{n}-(3-2 \sqrt{2})^{n}\right] \\
& \bar{y}_{n}=\frac{1}{2}\left[(3+2 \sqrt{2})^{n}+(3-2 \sqrt{2})^{n}\right], n=1,2,3 \cdots . \tag{3.9}
\end{align*}
$$

This shows that both x_{n} and y_{n} are positive. Therefore, the following two sets of expressions for x_{n} and y_{n} satisfy Brahmagupta's lemma between (x_{1}, y_{1}) and $\left(\bar{x}_{n}, \bar{y}_{n}\right.$.) The other solutions of (3.7) can be obtained from the relations:

$$
\begin{array}{ll}
x_{n}=x_{1} \bar{y}_{n}+y_{1} \bar{x}_{n}=(t-1) \bar{y}_{n}+\bar{x}_{n}, & y_{n}=y_{1} \bar{y}_{n}+d x_{1} \bar{x}_{n}=\bar{y}_{n}+2(t-1) \bar{x}_{n}, \\
x_{n}^{\prime}=x_{1} \bar{y}_{n}-y_{1} \bar{x}_{n}=(t-1) \bar{y}_{n}-\bar{x}_{n}, & y_{n}^{\prime}=d x_{1} \bar{x}_{n}-y_{1} \bar{y}_{n}=2(t-1) \bar{x}_{n}-\bar{y}_{n} .
\end{array}
$$

Substituting \bar{x}_{n}, \bar{y}_{n} of (3.9) into the above equations, we get

$$
\begin{aligned}
& 2 \sqrt{2} x_{n}=(3+2 \sqrt{2})^{n}(\sqrt{2}(t-1)+1)+(3-2 \sqrt{2})^{n}(\sqrt{2}(t-1)-1), \\
& 2 \sqrt{2} y_{n}=(3+2 \sqrt{2})^{n}(2(t-1)+\sqrt{2})-(3-2 \sqrt{2})^{n}(2(t-1)-\sqrt{2}), \\
& 2 \sqrt{2} x_{n}^{\prime}=(3+2 \sqrt{2})^{n}(\sqrt{2}(t-1)-1)+(3-2 \sqrt{2})^{n}(\sqrt{2}(t-1)+1), \\
& 2 \sqrt{2} y_{n}^{\prime}=(3+2 \sqrt{2})^{n}(2(t-1)-\sqrt{2})-(3-2 \sqrt{2})^{n}(2(t-1)+\sqrt{2}) .
\end{aligned}
$$

Now, we have obtained two sequences of x_{n}, y_{n} and $x_{n}^{\prime}, y_{n}^{\prime}$ which we can use to get the recurrence relations of x_{n}, y_{n} and $x_{n}^{\prime}, y_{n}^{\prime}$,

$$
\begin{aligned}
x_{n}=6 x_{n-1}-x_{n-2}, & y_{n}=6 y_{n-1}-y_{n-2}, \\
x_{n}^{\prime} & =6 x_{n-1}-x_{n-2},
\end{aligned} \quad y_{n}^{\prime}=6 y_{n-1}-y_{n-2} .
$$

We denote the $n^{t h} t$-co-cobalancing number by \bar{B}_{n}^{t}. From (3.6) and $x_{n}, y_{n}, x_{n}^{\prime}, y_{n}^{\prime}$ we have

$$
\bar{B}_{n}^{t}=\frac{1}{2}\left[(2 r-3)+\sqrt{8 r^{2}+8 r t-8 r+1}\right]
$$

and

$$
y=y_{n}=y_{n}^{\prime}=\sqrt{8 r^{2}+8 r t-8 r+1}, x=x_{n}=x_{n}^{\prime}=2 r+t-1 .
$$

Hence

$$
\begin{aligned}
\bar{B}_{n}^{t} & =\frac{1}{2}\left[(2 r-3)+x_{n}+y_{n}-2 r-t+1\right] \\
& =\frac{1}{2}\left[x_{n}+y_{n}-(t+2)\right], t \geq 3
\end{aligned}
$$

which is the generalized recurrence relation of t-co-cobalancing numbers.
t-Co-cobalancing Numbers

3.1 Properties of t-co-cobalancing numbers

We reduce equation (3.5) to

$$
r^{2}+r(2 n+2 t+1)-\left(n^{2}+3 n+2\right)=0 .
$$

n is a t-co-cobalancing number if and only if $8 n^{2}+8 n(t+2)+(2 t+1)^{2}+8$ is a perfect square. Consider the function

$$
F(x)=3 x+(t+2)+\sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8} .
$$

We will show that for any t-co-cobalancing number $x, F(x)$ is a t-cocobalancing number.

Theorem 3.1. If x is a t-co-cobalancing number, then

$$
F(x)=3 x+(t+2)+\sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8}
$$

is also a t-co-cobalancing number.
Proof. Let $F(x)=u$. Thus $x<u$ and

$$
x=3 u+(t+2)-\sqrt{8 u^{2}+8 u(t+2)+(2 t+1)^{2}+8} .
$$

Since x is a $t-$ co-cobalancing number, $8 u^{2}+8 u(t+2)+(2 t+1)^{2}+8$ is a perfect square. This implies that u is a t-co-cobalancing number and $F(x)=u$. Therefore, $F(x)$ is a t-co-cobalancing number.

Theorem 3.2. Let \bar{B}_{n}^{t} be the $n^{\text {th }} t$-co-cobalancing number. If $x=\bar{B}_{n}^{t}$, then

$$
\bar{B}_{n+2}^{t}=F(x)=3 x+(t+2)+\sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8}
$$

and

$$
\bar{B}_{n-2}^{t}=\bar{F}(x)=3 x+(t+2)-\sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8}
$$

Proof. Define a function $F:[-1, \infty) \rightarrow[3 t-2, \infty)$ by

$$
F(x)=3 x+(t+2)+\sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8}
$$

It is clear that $x<F(x)$. Since

$$
F^{\prime}(x)=3+\frac{4(2 x+t+2)}{\sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8}}>0
$$

F is a strictly increasing function. Hence F is one to one and $x<F(x), x \geq$ -1 . Thus F^{-1} exists and is also strictly increasing with $F^{-1}(x)<x$. Since

$$
\begin{aligned}
F^{-1}(x) & =3 x+(t+2)-\sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8}, \\
8\left(F^{-1}(x)\right)^{2} & +8\left(F^{-1}(x)\right)(t+2)+(2 t+1)^{2}+8 \\
& =\left[3 \sqrt{8 x^{2}+8 x(t+2)+(2 t+1)^{2}+8}-8 x-4(t+2)\right]^{2} .
\end{aligned}
$$

It follows that $F^{-1}(x)$ is also a t-co-cobalancing number. Next, we will prove the remaining part by mathematical induction.

The first three t-co-cobalancing numbers of one of the sequences are $c_{1}=3 t-7, c_{2}=20 t-36, c_{3}=119 t-205$ which generate the odd termed t-co-cobalancing numbers and the first three t-co-cobalancing numbers of the other sequences are $c_{1}=3 t-2, c_{2}=20 t-7, c_{3}=119 t-2$ which generate the even termed t-co-cobalancing numbers. We know that $F\left(c_{1}\right)=c_{2}$ and $F\left(c_{2}\right)=c_{3}$. Assume that H_{k} is the hypothesis that there is no even (or odd) t-co-cobalancing number between x_{n-1} and x_{n} for $n=1,2, \cdots, k$. We will prove that H_{k+1} is true; i.e., there is no t-co-cobalancing number y such that $x_{k}<y<x_{k+1}$. Assume to the contrary that there exists a t-co-cobalancing number y between $x_{k}<y<x_{k+1}$. It follows that $F^{-1}\left(x_{k}\right)<F^{-1}(y)<$ $F^{-1}\left(x_{k+1}\right)$ but $F^{-1}\left(x_{k}\right)=x_{k-1}$ and $F^{-1}\left(x_{k+1}\right)=x_{k}$ thus $x_{k-1}<F^{-1}(y)<$ x_{k}. Since y and $F^{-1}(y)$ are t-co-cobalancing numbers, there exists a t-cocobalancing number between x_{k-1} and x_{k} which is a contradiction. So H_{k+1} is true. Therefore, there is no t-co-cobalancing number between x_{k-1} and x_{k}.

From the theorem 3.2, if $\bar{B}_{n}{ }^{t}=x$ is an even (or odd) term t-co-cobalancing number, then the next even (or odd) term t-co-cobalancing number is

$$
\bar{B}_{n+2}^{t}=3 \bar{B}_{n}^{t}+(t+2)+\sqrt{8\left(\bar{B}_{n}^{t}\right)^{2}+8 \bar{B}_{n}^{t}(t+2)+(2 t+1)^{2}+8}
$$

and the previous even (or odd) term t-co-cobalancing number is

$$
\bar{B}_{n-2}^{t}=3 \bar{B}_{n}^{t}+(t+2)-\sqrt{8\left(\bar{B}_{n}^{t}\right)^{2}+8 \bar{B}_{n}^{t}(t+2)+(2 t+1)^{2}+8} .
$$

Then

$$
\bar{B}_{n+2}^{t}=6 \bar{B}_{n}^{t}-\bar{B}_{n-2}^{t}+2(t+2), t \geq 3 .
$$

Hence

$$
\begin{equation*}
\bar{B}_{n}^{t}=6 \bar{B}_{n-2}^{t}-\bar{B}_{n-4}^{t}+2(t+2) \tag{3.10}
\end{equation*}
$$

t-Co-cobalancing Numbers

Theorem 3.3. If \bar{B}_{n}^{t} is the $n^{\text {th }} t$-co-cobalancing number, then

$$
\left[\bar{B}_{n}^{t}-(t+2)\right]^{2}-\bar{B}_{n+2}^{t} \cdot \bar{B}_{n-2}^{t}=(2 t+1)^{2}+8
$$

Proof. From equation (3.10), we have

$$
\bar{B}_{n+2}^{t}=6 \bar{B}_{n}^{t}-\bar{B}_{n-2}^{t}+2(t+2)
$$

Thus

$$
\begin{equation*}
\frac{\bar{B}_{n+2}^{t}+\bar{B}_{n-2}^{t}-2(t+2)}{\bar{B}_{n}^{t}}=6 \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\bar{B}_{n}^{t}+\bar{B}_{n-4}^{t}-2(t+2)}{\bar{B}_{n-2}^{t}}=6 \tag{3.12}
\end{equation*}
$$

From equations (3.11) and (3.12), we get

$$
\begin{aligned}
\left(\bar{B}_{n}^{t}\right)^{2} & +\bar{B}_{n}^{t} \cdot \bar{B}_{n-4}^{t}-2 \bar{B}_{n}^{t}(t+2) \\
& =\left(\bar{B}_{n-2}^{t}\right)^{2}+\bar{B}_{n+2}^{t} \cdot \bar{B}_{n-2}^{t}-2 \bar{B}_{n-2}^{t}(t+2)
\end{aligned}
$$

Hence

$$
\left[\bar{B}_{n}^{t}-(t+2)\right]^{2}-\bar{B}_{n+2}^{t} \cdot \bar{B}_{n-2}^{t}=\left[\bar{B}_{n-2}^{t}-(t+2)\right]^{2}-\bar{B}_{n}^{t} \cdot \bar{B}_{n-4}^{t}
$$

Similarly,

$$
\left[\bar{B}_{n-2}^{t}-(t+2)\right]^{2}-\bar{B}_{n}^{t} \cdot \bar{B}_{n-4}^{t}=\left[\bar{B}_{n-4}^{t}-(t+2)\right]^{2}-\bar{B}_{n-2}^{t} \cdot \bar{B}_{n-6}^{t}
$$

Continuing in the same way, we get

$$
\left[\bar{B}_{n}^{t}-(t+2)\right]^{2}-\bar{B}_{n+2}^{t} \cdot \bar{B}_{n-2}^{t}=\left\{\begin{array}{l}
{\left[\bar{B}_{3}^{t}-(t+2)\right]^{2}-\bar{B}_{5}^{t} \cdot \bar{B}_{1}^{t} \text { if } n \text { is odd }} \\
{\left[\bar{B}_{4}^{t}-(t+2)\right]^{2}-\bar{B}_{6}^{t} \cdot \bar{B}_{2}^{t} \text { if } n \text { is even }}
\end{array}\right.
$$

We know that $\bar{B}_{1}^{t}=3 t-7, \bar{B}_{3}^{t}=20 t-36, \bar{B}_{5}^{t}=119 t-205$ and $\bar{B}_{2}^{t}=$ $3 t-2, \bar{B}_{4}^{t}=20 t-7, \bar{B}_{6}^{t}=119 t-2$.
Substituting these values in both cases, we have

$$
\left[\bar{B}_{n}^{t}-(t+2)\right]^{2}-\bar{B}_{n+2}^{t} \cdot \bar{B}_{n-2}^{t}=(2 t+1)^{2}+8
$$

Acknowledgment. The authors would like to thank the the Faculty of Science, Burapha University, Thailand for its financial support through Grant no. SC-03/2564.

References

[1] A. Behera, G.K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37, no. 2, (1999), 98-105.
[2] G.K. Panda, P.K. Ray, Cobalancing number and Cobalancers, International Journal of Mathematical Science, 8, (2005), 1189-1200.
[3] K.K. Dash, R.S. Ota, t-Balancing Numbers, Int. J. Contemp. Math. sciences, 7, no. 41, (2012), 1999-2012.
[4] A. Pakapongpun, B. Chattae, Co-cobalancing numbers and Balancing numbers, International Journal of Mathematics and Computer Science, 18, no. 3, (2023), 369-380.
[5] M. Erickson, A. Vazzana, Number Theory Structures, Examples, and Problems, Birkhauser, Boston, 2009.
[6] T. Andreescu, D. Andrica, Introduction to Number Theory, Chapman and Hall, New York, 1963.
[7] A.K. Dutta, Mathematics in Ancient India, Resonance, (2003), 10-24.
[8] K.H. Rosen, Elementary Number Theory, 6th Edition, Chelsea Publishing as Pearson International, New York, 2013.

