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Abstract

Let Fk be a Fibonacci number and let Lk be a Lucas number. By
applying Catalan’s conjecture and the modular arithmetic method,
we solve the exponential Diophantine equations of the form (22s −
1)x + (2s+1)y = F 2

k and (22s − 1)x + (2s+1)y = L2
k where x, y, k are

non-negative integers and s is a positive integer.

1 Introduction

In 2007, Acu [3] proved that the Diophantine equation 2x +5y = z2 has only
two solutions (3, 0, 3) and (2, 1, 3) where x, y and z are non-negative integers.
Later, many papers have been published on this type of Diophantine equation
px+qy = z2. Suvarnamani [1] found the solutions of the Diophantine equation
2x + py = z2, for non-negative integers x, y, z and prime number p. Sroysang
[4] and Rabago [5] have done work on the Diophantine equations 3x+5y = z2

and 2x + 17y = z2 respectively.
Recently, Elshahed, Kamarulhaili [2], Mina and Bacani [13], Borah and Dutta
[6], Pakapongpun and Chattae [7], Tadee [8] and Tadee and Siraworakun [14]

Key words and phrases: Exponential Diophantine equation, Fibonacci
number, Lucas number.
AMS (MOS) Subject Classifications: 11D61, 11D45, 11B39.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net



554 H. S. Taher, S. K. Dash

have worked on (4n)x−py = z2, px+(p+4k)y = z2, 7x+32y = z2, px+7y = z2,
nx + 10y = z2 and px + (p+ 2q)y = z2, respectively.
On the other hand, several mathematicians have extensively investigated
Diophantine equations related to linear recurrence sequences. In 2016, Bravo
and Luca [9] worked on solutions of the Diophantine equation Fn + Fm =
2a. Marques and Togbé [10] found all solutions of the Fibonacci and Lucas
numbers of the form 2a + 3b + 5c, where a, b, c are non-negative integers
with c ≥ max{a, b} ≥ 0. Moreover, Qu and Zeng [11] found all Pell and
Pell-Lucas Numbers written in the form −2a − 3b + 5c, where a, b, c are non-
negative integers with c ≥ max{a, b} ≥ 0. Using linear forms in logarithms
of algebraic numbers and the Baker-Davenport reduction method, Tiebekabe
and Diouf [12] found the solutions of the Diophantine equation Ln+Lm = 3a.
In this paper, we find all solutions of the Diophantine equation

(22s − 1)x + (2s+1)y = z2,

where x, y are non-negative integers, s is a positive integer and z is a Fi-
bonacci or a Lucas number.

2 Preliminaries

Let {Fk}k≥0 be the Fibonacci sequence defined by the recurrence relations

F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 for k ≥ 2.

Let {Lk}k≥0 be the Lucas sequence defined by the recurrence relations

L0 = 2, L1 = 1, Lk = Lk−1 + Lk−2 for k ≥ 2.

The characteristic polynomial of both sequences is

f(x) = x2 − x− 1,

which has the two roots α = (1 +
√
5)/2 and β = (1−

√
5)/2.

The Benit’s formulas for the Fibonacci and Lucas sequences are defined by

Fk =
αk − βk

α− β
, Lk = αk − βk,

The Online Encyclopedia of Integer (OEIS) of Fibonacci and Lucas sequences
are A000045 and A000032, respectively.
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Theorem 2.1. ([15], Catalan’s conjecture/Mihăilescu’s theorem) The Dio-
phantine equation ax−by = 1 has exactly one solution (3, 2, 2, 3), where x, y, a
and b are integers with min{a, b, x, y} > 1.

Lemma 2.2. If m is an odd number, then m ≡ 1 or 3 (mod 4).

Proof. Letm be an odd number. Then there exists s ∈ Z such thatm = 4s+1
or m = 4s+ 3.
Case 1. If m = 4s + 1, then we have 4|m − 1 which implies that m ≡ 1
(mod 4).
Case 2. If m = 4s + 3, then we have 4|m − 3 which implies that m ≡ 3
(mod 4).

Lemma 2.3. If m is an integer, then m2 ≡ 0 or 1 (mod 4).

Proof. Let m be an integer. We consider the following two exclusive cases:
Case 1. m is an even number. We can write m = 2s, where s ∈ Z. Then
m2 = 4s2 which implies that 4|m2 or m2 ≡ 0 (mod 4).
Case 2. m is an odd number. We can write m = 2s+1, where s ∈ Z. Then
m2 = (2s + 1)2 = 4s2 + 4s + 1. So m2 − 1 = 4(s2 + s) which implies that
4|m2 − 1 or m2 ≡ 1 (mod 4).

Lemma 2.4. If s and x are positive integers, then (22s − 1)x ≡ 1 or 3
(mod 4).

Proof. Let s, x be two positive integers. We consider the following two ex-
clusive cases:
Case 1. x is an even number. We can write x = 2r, where r ∈ Z

+. We have
(22s − 1) ≡ −1 (mod 4), for each positive integer s. Then (22s − 1)2r ≡ 1
(mod 4), for each r ∈ Z

+.
Case 2. x is an odd number. We can write x = 2r+1, where r ∈ Z. We have
(22s − 1) ≡ −1 (mod 4), for each positive integer s. Then (22s− 1)2r+1 ≡ −1
(mod 4), for each r ∈ Z

+ which implies that (22s − 1)2r+1 ≡ 3 (mod 4).

Lemma 2.5. If s and y are positive integers, then (2s+1)y ≡ 0 (mod 4).

Proof. Let s, y be two positive integers. We have (2s+1) ≡ 0 (mod 4). Then
(2s+1)y ≡ 0 (mod 4), for each positive integer s and y.
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3 Main Results

Theorem 3.1. If Fk is a Fibonacci number, then the solutions of the Dio-
phantine equation

(22s − 1)x + (2s+1)y = F 2

k , (3.1)

are (s, x, y, Fk) ∈ {(1, 1, 0, 2), (2, 0, 1, 3), (1, 2, 2, 5), (3, 1, 0, 8)}, where s is a
positive integer and x, y, k are non-negative integers.

Proof. We consider the following exclusive cases for all non-negative integers
x, y and k:
Case 1. If k = 0, then we have F0 = 0. This implies that (22s−1)x+(2s+1)y =
0 which is impossible for any value of x and y.
Case 2. If x = 0, then 1 + (2s+1)y = F 2

k which, by Theorem 2.1, has only
one solution (s, x, y, Fk) = (2, 0, 1, 3).
Case 3. If y = 0, then (22s−1)x+1 = F 2

k is solvable only when (s, x, y, Fk) ∈
{(1, 1, 0, 2), (3, 1, 0, 8)}.
Case 4. If x = y = 0, then we have 1 + 1 = F 2

k which is impossible.
Case 5. If x = y = k = 0, then we get 1 + 1 = 0 which is impossible.
For the remaining possibilities, we can now assume that x, y, k are positive
integers.
Case 6. If Fk is an even number, then k = 3j, for each j ∈ Z

+. By Lemma
2.3, we have F 2

k ≡ 0 (mod 4), where k = 3j, for each j ∈ Z
+. According to

Lemmas 2.4 and 2.5, we have (22s − 1)x + (2s+1)y ≡ 1 or 3 (mod 4) for each
positive integer y and x = 2r or 2r + 1, for each r ∈ Z

+ which is impossible
by our assumption.
Case 7. Let Fk be an odd number. Then k = 3j − 2 or 3j − 1, for each
j ∈ Z

+. By Lemma 2.2, we have Fk ≡ 1 or 3 (mod 4), where k = 3j −
2 or 3j − 1, for each j ∈ Z

+. By Lemma 2.3, we get F 2
k ≡ 1 (mod 4), where

k = 3j − 2 or 3j − 1 for each j ∈ Z
+.

Also, by Lemmas 2.4 and 2.5, we have

(22s − 1)x + (2s+1)y ≡ 1 (mod 4),

for each positive integer y and x = 2r and for each r ∈ Z
+. Thus

(22s − 1)2r + (2s+1)y = F 2

k ,

(2s+1)y = (Fk + (22s − 1)r)(Fk − (22s − 1)r),

there exist non-negative integers α and β, where α+β = (s+1)y and α > β,
such that 2α = Fk + (22s − 1)r and 2β = Fk − (22s − 1)r. As a result,

2(22s − 1)r = 2β(2α−β − 1),
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which implies that 2β = 2. Thus β = 1. Therefore,

(22s − 1)r = (2α−1 − 1).

Comparing the left-hand side and right-hand side, we get r = 1 and α− 1 =
2s.
Hence α + β = 2s+ 1 + 1 = 2(s+ 1) and so y = 2. This implies that

Fk = 2β−1(2α−β + 1) = 22s + 1,

is solvable only when (s, Fk) = (1, 5). Consequently, (s, x, y, Fk) = (1, 2, 2, 5)
is a solution of (3.1).

Theorem 3.2. If Lk is a Lucas number, then the solutions of the Diophan-
tine equation

(22s − 1)x + (2s+1)y = L2

k, (3.2)

are (s, x, y, Lk) ∈ {(1, 1, 0, 2), (2, 0, 1, 3), (2, 1, 0, 4)}, where s is a positive in-
teger and x, y, k are non-negative integers.

Proof. We consider the following exclusive cases for all non-negative integers
x, y and k:
Case 1. If k = 0, then we have L0 = 2, which implies that (22s − 1)x +
(2s+1)y = (2)2 is solvable only for x = 1 and y = 0. Hence (s, x, y, Lk) =
(1, 1, 0, 2) is a solution.
Case 2. If x = 0 in equation (3.2), then 1 + (2s+1)y = L2

k by Theorem 2.1,
is solvable only for (s, x, y, Lk) = (2, 0, 1, 3) and is a solution.
Case 3. If y = 0, then (22s−1)x+1 = L2

k is solvable only when (s, x, y, Lk) ∈
{(1, 1, 0, 2), (2, 1, 0, 4)}.
Case 4. If x = y = 0, then we have 1 + 1 = L2

k which is impossible.
Case 5. If x = y = k = 0, then we get 1 + 1 = 4 which is impossible.
For the remaining possibilities, we assume that x, y, k are positive integers.
Case 6. If Lk be an even number, then k = 3j, for each j ∈ Z

+. By Lemma
2.3, we have L2

k ≡ 0 (mod 4) where k = 3j, for each j ∈ Z
+. According to

Lemmas 2.4 and 2.5, we have (22s − 1)x + (2s+1)y ≡ 1 or 3 (mod 4) for each
positive integer y and x = 2r or 2r + 1 for each r ∈ Z

+ which is impossible
by our assumption.
Case 7. If Lk be an odd number, then k = 3j−2 or 3j−1, for each j ∈ Z

+.
By Lemma 2.2, we have Lk ≡ 1 or 3 (mod 4) where k = 3j − 2 or 3j − 1
for each j ∈ Z

+ and by Lemma 2.3, we get L2
k ≡ 1 (mod 4) where k =
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3j − 2 or 3j − 1 for each j ∈ Z
+.

Also, by Lemmas 2.4 and 2.5, we have

(22s − 1)x + (2s+1)y ≡ 1 (mod 4),

for each positive integer y and x = 2r and for each r ∈ Z
+. Thus

(22s − 1)2r + (2s+1)y = L2

k,

(2s+1)y = (Lk + (22s − 1)r)(Lk − (22s − 1)r),

there exist non-negative integers α and β where α+β = (s+1)y and α > β,
such that 2α = Lk + (22s − 1)r and 2β = Lk − (22s − 1)r. We get

2(22s − 1)r = 2β(2α−β − 1),

which implies that 2β = 2. Hence β = 1. Thus

(22s − 1)r = (2α−1 − 1).

Comparing the left-hand side and right-hand side, we get r = 1 and α− 1 =
2s.
Hence α+ β = 2s+ 1 + 1 = 2(s+ 1). So y = 2. This shows that

Lk = 2β−1(2α−β + 1) = 22s + 1,

is not solvable for any positive integers s and k.

Conclusion

In this study, we discovered all solutions of the exponential Diophantine equa-
tions (22s − 1)x + (2s+1)y = F 2

k and (22s − 1)x + (2s+1)y = L2
k, where s is a

positive number, Fk is a Fibonacci number, Lk is a Lucas number and x, y, k
are non-negative integers. This should help readers try to solve exponential
Diophantine equations for other special sequence numbers.
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