International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 765–770

Proposed Multi-Dimensional Algebra

Kawthar Abdulabbas Hassoon¹, Hassan Rashed Yassein²

¹Department of Mathematics Faculty of Education for Girls University of Kufa Alnajaf, Iraq

²Department of Mathematics Faculty of Education University of Al-Qadisiyah Al-Qadisiyah, Iraq

email: kawthara.alshammari@student.uokufa.edu.iq, hassan.yaseen@qu.edu.iq

(Received December 23, 2023, Accepted January 24, 2024, Published February 12, 2024)

Abstract

In this paper, we establish a new eight-dimensional algebra callked KAH-Octo. Moreover, we study subalgebras aand give some properties of the algebra such as division, isomorphism, simple, semi-simple, Jordan, Malcev, among others. Furthermore, we give some applications to some interesting areas of mathematics such as cryptography.

1 Introduction

Many researchers have presented different types of multi-dimensional algebra and we will mention a number of them. In 2016, Yassein and Al-Saidi [1] proposed that hexadecnion algebra has 16 dimensions. In 2018, Yassein and Al-Saidi introduced bicartesian algebra has two dimensions [2]. In 2020,

Key words and phrases: Algebra, Multi-Dimensional Algebra, KAH-Algebra.
AMS (MOS) Subject Classifications: 16P05, 16K20.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Yassein et al. [3] proposed carternion algebra which has four dimensions. In 2021, Abo-Alsood [4] and Yassein introduced bi-octonion algebra with basis $\{1, e_1\}$. Also in 2021, Shahhadi and Yassein [5] proposed tripternion algebra with basis $\{1, x, x^2\}$.

2 KAH-Octo Algebra

In this section, we propose a new multidimensional algebra over the field F, called KAH-Octo and denoted by KO, as follows: $KO = \{x : x = \sum_{i=0}^{7} x_i \beta_i | x_0, \dots, x_7 \in F, \beta_0 = 0\}$. Now, define the operators addition, multiplication, and scalar multiplication as follows: Let $x, y \in KO$ and $a \in F$ such that

$$x = \sum_{i=0}^{7} x_i \beta_i, y = \sum_{i=0}^{7} y_i \beta_i.$$

Then

$$x + y = \sum_{i=0}^{7} x_i \beta_i + \sum_{i=0}^{7} y_i \beta_i = \sum_{i=0}^{7} (x_i + y_i) \beta_i,$$
$$x * y = \sum_{i=0}^{7} (x_i y_i) \beta_i,$$

and

$$a.x = a.\left(\sum_{i=0}^{7} x_i\beta_i\right) = \sum_{i=0}^{7} ax_i\beta_i,$$

respectively.

It is clear that (KO, +, .) is a vector space with a basis $\{\beta_0 = 1, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7\}.$

Proposition 2.1. There are eight forms of subspaces of the vector space KO.

Proof. Let $w_i \subseteq KO$, $i = \{0, ..., 7\}$ 1) The first form is $w_1 = \{x_i\beta_i\}$: Let $x, y \in w_1$ such that $x = x_i\beta_i$, $y = y_i\beta_i$. i) $x + y = x_i\beta_i + y_i\beta_i = (x_i + y_i)\beta_i \in w_1$. ii) $a.x = a.x_i\beta_i = (ax_i)\beta_i \in w_1$. Therefore, w_1 is a subspace and the number of this form is eight.

766

Proposed Multi-Dimensional Algebra

2) The second form is w₂ = ∑_{j=1}² x_{ij}β_{ij}. Let x,y ∈ w₂ such that x = ∑_{j=1}² x_{ij}β_{ij}, ∑_{j=1}² y_{ij}β_{ij}.
i) x + y = ∑_{j=1}² x_{ij}β_{ij} + ∑_{j=1}² y_{ij}β_{ij} = ∑_{j=1}² (x_{ij} + y_{ij})β_{ij} ∈ w₂.
ii) a.x = a. ∑_{j=1}² x_{ij}β_{ij} = ∑_{j=1}² (ax_{ij})β_{ij} ∈ w₂. Therefore, w₂ is a subspace and the number of this form is 28.
The proofs for the following remaining cases are similar.
3) The third form is w₃ = ∑_{j=1}³ x_{ij}β_{ij} and the number of this form is 56.
4) The fourth form is w₄ = ∑_{j=1}⁴ x_{ij}β_{ij} and the number of this form is 56.
5) The fifth form is w₅ = ∑_{j=1}⁵ x_{ij}β_{ij} and the number of this form is 28.
7) The seventh form is w₆ = ∑_{j=1}⁶ x_{ij}β_{ij} and the number of this form is 28.
8) The eighth form is w₈ = ∑_{j=1}⁸ x_{ij}β_{ij} and the number of this form is 28.

Proposition 2.2. The vector space KO is a commutative algebra with multiplication *.

Proof. Let $x, y, z \in KO$, $a \in F$ such that

$$x = \sum_{i=0}^{7} x_i \beta_i, y = \sum_{i=0}^{7} y_i \beta_i, z = \sum_{i=0}^{7} z_i \beta_i.$$

$$1)x * (y + z) = \sum_{i=0}^{7} x_i \beta_i * \left(\sum_{i=0}^{7} y_i \beta_i + \sum_{i=0}^{7} x_i \beta_i\right) = \sum_{i=0}^{7} x_i \beta_i * \sum_{i=0}^{7} (y_i + z_i) \beta_i$$

$$= \sum_{i=0}^{7} x_i (y_i + z_i) \beta_i = \sum_{i=0}^{7} (x_i y_i + x_i z_i) \beta_i = \sum_{i=0}^{7} (x_i y_i) \beta_i + \sum_{i=0}^{7} (x_i z_i) \beta_i = x * y + x * z.$$

2) Similarly, (x + y) * z = x * z + y * z.

$$3)a.(x*y) = a.\left(\sum_{i=0}^{7} x_i\beta_i * \sum_{i=0}^{7} y_i\beta_i\right) = a.\sum_{i=0}^{7} (x_iy_i)\beta_i = \sum_{i=0}^{7} a(x_iy_i)\beta_i = \sum_{i=0}^{7} ((ax_i)y_i)\beta_i = (a.x)*y$$

and

$$(a.x)*y = \sum_{i=0}^{7} ((ax_i)y_i)\beta_i = \sum_{i=0}^{7} ((x_ia)y_i)\beta_i = \sum_{i=0}^{7} (x_i(ay_i))\beta_i = \sum_{i=0}^{7} x_i\beta_i * \sum_{i=0}^{7} (ay_i)\beta_i$$
$$= \sum_{i=0}^{7} x_i\beta_i * a. \sum_{i=0}^{7} y_i\beta_i = x * (ay).$$

K. A. Hassoon, H. R. Yassein

Therefore, KO is an algebra.

4) $x * y = \sum_{i=0}^{7} (x_i y_i) \beta_i = \sum_{i=0}^{7} (y_i x)_i \beta_i = y * x$. Hence KO is commutative. **Remark 2.3.** Every subspace of KO is a subalgebra of the KO algebra with multiplication *.

Corollary 2.4. The Algebra KO is associative.

Proof.

$$(x*y)*z = \left(\sum_{i=0}^{7} x_i\beta_i * \sum_{i=0}^{7} y_i\beta_i\right)*\sum_{i=0}^{7} z_i\beta_i = \sum_{i=0}^{7} (x_iy_i)\beta_i*\sum_{i=0}^{7} z_i\beta_i = \sum_{i=0}^{7} ((x_iy_i)z_i)\beta_i$$
$$= \sum_{i=0}^{7} (x_i(y_iz_i))\beta_i = \left(\sum_{i=0}^{7} x_i\beta_i * \sum_{i=0}^{7} y_iz_i\beta_i\right) = \sum_{i=0}^{7} x_i\beta_i*\left(\sum_{i=0}^{7} y_i\beta_i * \sum_{i=0}^{7} z_i\beta_i\right) = x*(y*z)$$

Remark 2.5. The identity element in KO algebra is $1 + \sum_{i=1}^{7} \beta_i$, the multiplicative inverse of x is $x^{-1} = \sum_{i=0}^{7} x_i^{-1} \beta_i$ such that $x_i \neq 0 \forall i = 0, ..., 7$, and KO algebra is not division because if $x = 1 + \beta_1$, $y = \beta_2 + \beta_3$ then x * y = 0.

Proposition 2.6. In the field R, $(KO, +, ., *) \cong (R^8, +, ., \circledast)$ such that $(x_0, ..., x_7) \circledast (y_0, ..., y_7) = (x_0y_0, ..., x_7y_7).$

Proof. Let $x, y \in KO$ and $a, b \in R$ such that

$$x = \sum_{i=0}^{7} x_i \beta_i, y = \sum_{i=0}^{7} y_i \beta_i.$$

Define $f:(KO,+,.,*)\to (R^8,+,.,\circledast)$ such that

$$f(\sum_{i=0}^{7} x_i \beta_i) = (x_0, \dots, x_7).$$

Then

$$1)f(a.x+b.y) = f(a.\sum_{i=0}^{7} x_i\beta_i + b.\sum_{i=0}^{7} y_i\beta_i) = f(\sum_{i=0}^{7} (ax_i)\beta_i + \sum_{i=0}^{7} (by_i)\beta_i)$$

$$= f(\sum_{i=0}^{n} (ax_i + by_i)\beta_i) = (ax_0 + by_0 + ax_1 + by_1 + \dots + ax_7 + by_7) = (ax_0 + ax_1 + \dots + ax_7)$$

$$(by_0 + by_1 + \dots + by_7) = a(x_0 + x_1 + \dots + x_7) + b(y_0 + y_1 + \dots + y_7) = a \cdot f(x) + b \cdot f(y).$$

768

Proposed Multi-Dimensional Algebra

$$2)f(x*y) = f(\sum_{i=0}^{7} x_i\beta_i * \sum_{i=0}^{7} y_i\beta_i) = f(\sum_{i=0}^{7} (x_iy_i)\beta_i) = (x_0y_0, \dots, x_7y_7)$$
$$= (x_0, \dots, x_7) \circledast (y_0, \dots, y_7) = f(\sum_{i=0}^{7} x_i\beta_i) \circledast f(\sum_{i=0}^{7} y_i\beta_i) = f(x) \circledast f(y).$$
$$3)f = \{x \in KO \mid f(x) = 0\} = \{x \in KO \mid f(x) = (0, 0, 0, 0, 0, 0, 0)\} = \{x \in KO \mid (x_0, x_1, \dots, x_7) = (0, 0, 0, 0, 0, 0, 0)\} = \{x \in KO \mid x_0 = x_1 = \dots = x_7 = 0\} = \{x \in KO \mid x = 0\}.$$

4) Let $(x_0, ..., x_7) \in R^8$. Then

$$x = \sum_{i=0}^{7} x_i \beta_i \in KO$$

such that

$$f(x) = f(\sum_{i=0}^{7} x_i \beta_i) = (x_0, \dots, x_7).$$

Therefore, f is onto. Consequently, $(KO, +, ., *) \cong (R^8, +, ., \circledast)$.

Proposition 2.7. 1) Every subalgebra I of KO is an ideal of KO since, $\forall x \in KO \text{ and } a \in I, \text{ the products } x * a \& a * x \text{ in KO are still elements of } I.$ 2) KO is not simple since, by 1) above, $I_1 = \{x_1\beta_1\}$ is an ideal. 3) KO is not semisimple since every ideal of KO is not simple. 4) KO is Jordan algebra since, $\forall x, y \in KO,$ i) x * y = y * xand ii) $x^2 * (y * x) = (x^2 * y) * x$ are satisfied.

5) KO is not a Malcev algebra since $x * y \neq -y * x, \forall x, y \in KO$.

References

- H. R. Yassein, N. M. G. Al-Saidi, HXDTRU cryptosystem based on hexadecnion algebra, Proceeding of 5th International Cryptology and Information Security Conference, Malaysia, 5, (2016), 1–14.
- [2] H. R. Yassein, N. M. G. Al-Saidi, BCTRU: A New Secure NTRU Crypt Public Key System Based on a Newly Multidimensional Algebra, Proceeding of 6th International Cryptology and Information Security Conference, Malaysia, (2018), 1–11.
- [3] H. R. Yassein, N. M. G. Al-Saidi, A. K. Farhan, A new NTRU cryptosystem outperforms three highly secured NTRU-analog systems through an innovational algebraic structure, Journal of Discrete Mathematical Sciences and Cryptography, 25, no. 2, (2020),523–542.
- [4] H. H. Abo-Alsood, H. R. Yassein, Design of an alternative NTRU Encryption with High Secure and Efficient, International Journal of Mathematics and Computer Science, 16, no. 4, (2021), 1469–1477.
- [5] S. H. Shahhadi, H. R. Yassein, NTRsh: A New Secure Variant of NTRU-Encrypt Based on Tripternion Algebra, in Journal of Physics: Conference Series, IOP Publishing, (2021), 1–6.