# Proposed Multi-Dimensional Algebra 

Kawthar Abdulabbas Hassoon ${ }^{1}$, Hassan Rashed Yassein ${ }^{2}$<br>${ }^{1}$ Department of Mathematics<br>Faculty of Education for Girls<br>University of Kufa<br>Alnajaf, Iraq<br>${ }^{2}$ Department of Mathematics<br>Faculty of Education<br>University of Al-Qadisiyah<br>Al-Qadisiyah, Iraq<br>email: kawthara.alshammari@student.uokufa.edu.iq, hassan.yaseen@qu.edu.iq

(Received December 23, 2023, Accepted January 24, 2024, Published February 12, 2024)


#### Abstract

In this paper, we establish a new eight-dimensional algebra callked KAH-Octo. Moreover, we study subalgebras aand give some properties of the algebra such as division, isomorphism, simple, semi-simple, Jordan, Malcev, among others. Furthermore, we give some applications to some interesting areas of mathematics such as cryptography.


## 1 Introduction

Many researchers have presented different types of multi-dimensional algebra and we will mention a number of them. In 2016, Yassein and Al-Saidi [1] proposed that hexadecnion algebra has 16 dimensions. In 2018, Yassein and Al-Saidi introduced bicartesian algebra has two dimensions [2]. In 2020,

Key words and phrases: Algebra, Multi-Dimensional Algebra, KAH-Algebra.
AMS (MOS) Subject Classifications: 16P05, 16K20.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Yassein et al. [3] proposed carternion algebra which has four dimensions. In 2021, Abo-Alsood [4] and Yassein introduced bi-octonion algebra with basis $\left\{1, e_{1}\right\}$. Also in 2021, Shahhadi and Yassein [5] proposed tripternion algebra with basis $\left\{1, x, x^{2}\right\}$.

## 2 KAH-Octo Algebra

In this section, we propose a new multidimensional algebra over the field $F$, called KAH-Octo and denoted by $K O$, as follows:
$K O=\left\{x: x=\sum_{i=0}^{7} x_{i} \beta_{i} \mid x_{0}, \ldots, x_{7} \in F, \beta_{0}=0\right\}$. Now, define the operators addition, multiplication, and scalar multiplication as follows:
Let $x, y \in K O$ and $a \in F$ such that

$$
x=\sum_{i=0}^{7} x_{i} \beta_{i}, y=\sum_{i=0}^{7} y_{i} \beta_{i} .
$$

Then

$$
\begin{gathered}
x+y=\sum_{i=0}^{7} x_{i} \beta_{i}+\sum_{i=0}^{7} y_{i} \beta_{i}=\sum_{i=0}^{7}\left(x_{i}+y_{i}\right) \beta_{i} \\
x * y=\sum_{i=0}^{7}\left(x_{i} y_{i}\right) \beta_{i}
\end{gathered}
$$

and

$$
a . x=a .\left(\sum_{i=0}^{7} x_{i} \beta_{i}\right)=\sum_{i=0}^{7} a x_{i} \beta_{i},
$$

respectively.
It is clear that $(K O,+,$.$) is a vector space with a basis$ $\left\{\beta_{0}=1, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$.

Proposition 2.1. There are eight forms of subspaces of the vector space KO.

Proof. Let $w_{i} \subseteq K O, i=\{0, \ldots, 7\}$

1) The first form is $w_{1}=\left\{x_{i} \beta_{i}\right\}$ :

Let $x, y \in w_{1}$ such that $x=x_{i} \beta_{i}, y=y_{i} \beta_{i}$.
i) $x+y=x_{i} \beta_{i}+y_{i} \beta_{i}=\left(x_{i}+y_{i}\right) \beta_{i} \in w_{1}$.
ii) $a . x=a \cdot x_{i} \beta_{i}=\left(a x_{i}\right) \beta_{i} \in w_{1}$.

Therefore, $w_{1}$ is a subspace and the number of this form is eight.
2) The second form is $w_{2}=\sum_{j=1}^{2} x_{i j} \beta_{i j}$.

Let $x, y \in w_{2}$ such that $x=\sum_{j=1}^{2} x_{i j} \beta_{i j}, \sum_{j=1}^{2} y_{i j} \beta_{i j}$.
i) $x+y=\sum_{j=1}^{2} x_{i j} \beta_{i j}+\sum_{j=1}^{2} y_{i j} \beta_{i j}=\sum_{j=1}^{2}\left(x_{i j}+y_{i j}\right) \beta_{i j} \in w_{2}$.
ii) $a . x=a . \sum_{j=1}^{2} x_{i j} \beta_{i j}=\sum_{j=1}^{2}\left(a x_{i j}\right) \beta_{i j} \in w_{2}$.

Therefore, $w_{2}$ is a subspace and the number of this form is 28 .
The proofs for the following remaining cases are similar.
3) The third form is $w_{3}=\sum_{j=1}^{3} x_{i j} \beta_{i j}$ and the number of this form is 56 .
4) The fourth form is $w_{4}=\sum_{j=1}^{4} x_{i j} \beta_{i j}$ and the number of this form is 70 .
5) The fifth form is $w_{5}=\sum_{j=1}^{5} x_{i j} \beta_{i j}$ and the number of this form is 56 .
6) The sixth form is $w_{6}=\sum_{j=1}^{6} x_{i j} \beta_{i j}$ and the number of this form is 28 .
7) The seventh form is $w_{7}=\sum_{j=1}^{7} x_{i j} \beta_{i j}$ and the number of this form is eight.
8) The eighth form is $w_{8}=\sum_{j=1}^{8} x_{i j} \beta_{i j}$ and the number of this form is 1 .

Proposition 2.2. The vector space $K O$ is a commutative algebra with multiplication *.

Proof. Let $x, y, z \in K O, a \in F$ such that

$$
\begin{gathered}
x=\sum_{i=0}^{7} x_{i} \beta_{i}, y=\sum_{i=0}^{7} y_{i} \beta_{i}, z=\sum_{i=0}^{7} z_{i} \beta_{i} . \\
1) x *(y+z)=\sum_{i=0}^{7} x_{i} \beta_{i} *\left(\sum_{i=0}^{7} y_{i} \beta_{i}+\sum_{i=0}^{7} x_{i} \beta_{i}\right)=\sum_{i=0}^{7} x_{i} \beta_{i} * \sum_{i=0}^{7}\left(y_{i}+z_{i}\right) \beta_{i} \\
=\sum_{i=0}^{7} x_{i}\left(y_{i}+z_{i}\right) \beta_{i}=\sum_{i=0}^{7}\left(x_{i} y_{i}+x_{i} z_{i}\right) \beta_{i}=\sum_{i=0}^{7}\left(x_{i} y_{i}\right) \beta_{i}+\sum_{i=0}^{7}\left(x_{i} z_{i}\right) \beta_{i}=x * y+x * z .
\end{gathered}
$$

2) Similarly, $(x+y) * z=x * z+y * z$.

$$
\text { 3) a. }(x * y)=a \cdot\left(\sum_{i=0}^{7} x_{i} \beta_{i} * \sum_{i=0}^{7} y_{i} \beta_{i}\right)=a \cdot \sum_{i=0}^{7}\left(x_{i} y_{i}\right) \beta_{i}=\sum_{i=0}^{7} a\left(x_{i} y_{i}\right) \beta_{i}=\sum_{i=0}^{7}\left(\left(a x_{i}\right) y_{i}\right) \beta_{i}=(a . x) * y
$$

and

$$
\begin{gathered}
(a . x) * y=\sum_{i=0}^{7}\left(\left(a x_{i}\right) y_{i}\right) \beta_{i}=\sum_{i=0}^{7}\left(\left(x_{i} a\right) y_{i}\right) \beta_{i}=\sum_{i=0}^{7}\left(x_{i}\left(a y_{i}\right)\right) \beta_{i}=\sum_{i=0}^{7} x_{i} \beta_{i} * \sum_{i=0}^{7}\left(a y_{i}\right) \beta_{i} \\
=\sum_{i=0}^{7} x_{i} \beta_{i} * a . \sum_{i=0}^{7} y_{i} \beta_{i}=x *(a y) .
\end{gathered}
$$

Therefore, $K O$ is an algebra.
4) $x * y=\sum_{i=0}^{7}\left(x_{i} y_{i}\right) \beta_{i}=\sum_{i=0}^{7}\left(y_{i} x\right)_{i} \beta_{i}=y * x$. Hence $K O$ is commutative.

Remark 2.3. Every subspace of $K O$ is a subalgebra of the $K O$ algebra with multiplication *.
Corollary 2.4. The Algebra $K O$ is associative.
Proof.

$$
\begin{aligned}
& (x * y) * z=\left(\sum_{i=0}^{7} x_{i} \beta_{i} * \sum_{i=0}^{7} y_{i} \beta_{i}\right) * \sum_{i=0}^{7} z_{i} \beta_{i}=\sum_{i=0}^{7}\left(x_{i} y_{i}\right) \beta_{i} * \sum_{i=0}^{7} z_{i} \beta_{i}=\sum_{i=0}^{7}\left(\left(x_{i} y_{i}\right) z_{i}\right) \beta_{i} \\
& =\sum_{i=0}^{7}\left(x_{i}\left(y_{i} z_{i}\right)\right) \beta_{i}=\left(\sum_{i=0}^{7} x_{i} \beta_{i} * \sum_{i=0}^{7} y_{i} z_{i} \beta_{i}\right)=\sum_{i=0}^{7} x_{i} \beta_{i} *\left(\sum_{i=0}^{7} y_{i} \beta_{i} * \sum_{i=0}^{7} z_{i} \beta_{i}\right)=x *(y * z) .
\end{aligned}
$$

Remark 2.5. The identity element in KO algebra is $1+\sum_{i=1}^{7} \beta_{i}$, the multiplicative inverse of $x$ is $x^{-1}=\sum_{i=0}^{7} x_{i}^{-1} \beta_{i}$ such that $x_{i} \neq 0 \forall i=0, \ldots, 7$, and KO algebra is not division because if $x=1+\beta_{1}, y=\beta_{2}+\beta_{3}$ then $x * y=0$.
Proposition 2.6. In the field $R,(K O,+, ., *) \cong\left(R^{8},+, ., \circledast\right)$ such that $\left(x_{0}, \ldots, x_{7}\right) \circledast$ $\left(y_{0}, \ldots, y_{7}\right)=\left(x_{0} y_{0}, \ldots, x_{7} y_{7}\right)$.

Proof. Let $x, y \in K O$ and $a, b \in R$ such that

$$
x=\sum_{i=0}^{7} x_{i} \beta_{i}, y=\sum_{i=0}^{7} y_{i} \beta_{i} .
$$

Define $f:(K O,+, ., *) \rightarrow\left(R^{8},+, ., \circledast\right)$ such that

$$
f\left(\sum_{i=0}^{7} x_{i} \beta_{i}\right)=\left(x_{0}, \ldots, x_{7}\right)
$$

Then

$$
\begin{aligned}
& \text { 1) } f(a . x+b . y)=f\left(a . \sum_{i=0}^{7} x_{i} \beta_{i}+b . \sum_{i=0}^{7} y_{i} \beta_{i}\right)=f\left(\sum_{i=0}^{7}\left(a x_{i}\right) \beta_{i}+\sum_{i=0}^{7}\left(b y_{i}\right) \beta_{i}\right) \\
& =f\left(\sum_{i=0}^{7}\left(a x_{i}+b y_{i}\right) \beta_{i}\right)=\left(a x_{0}+b y_{0}+a x_{1}+b y_{1}+\cdots+a x_{7}+b y_{7}\right)=\left(a x_{0}+a x_{1}+\cdots+a x_{7}\right) \\
& + \\
& \left(b y_{0}+b y_{1}+\cdots+b y_{7}\right)=a\left(x_{0}+x_{1}+\cdots+x_{7}\right)+b\left(y_{0}+y_{1}+\cdots+y_{7}\right)=a . f(x)+b . f(y) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) } f(x * y)=f\left(\sum_{i=0}^{7} x_{i} \beta_{i} * \sum_{i=0}^{7} y_{i} \beta_{i}\right)=f\left(\sum_{i=0}^{7}\left(x_{i} y_{i}\right) \beta_{i}\right)=\left(x_{0} y_{0}, \ldots, x_{7} y_{7}\right) \\
& \quad=\left(x_{0}, \ldots, x_{7}\right) \circledast\left(y_{0}, \ldots, y_{7}\right)=f\left(\sum_{i=0}^{7} x_{i} \beta_{i}\right) \circledast f\left(\sum_{i=0}^{7} y_{i} \beta_{i}\right)=f(x) \circledast f(y) . \\
& \text { 3) } f=\{x \in K O \mid f(x)=0\}=\{x \in K O \mid f(x)=(0,0,0,0,0,0,0)\}=\left\{x \in K O \mid\left(x_{0}, x_{1}, \ldots, x_{7}\right)\right. \\
& =(0,0,0,0,0,0,0)\}=\left\{x \in K O \mid x_{0}=x_{1}=\cdots=x_{7}=0\right\}=\{x \in K O \mid x=0\} .
\end{aligned}
$$

4) Let $\left(x_{0}, \ldots, x_{7}\right) \in R^{8}$. Then

$$
x=\sum_{i=0}^{7} x_{i} \beta_{i} \in K O
$$

such that

$$
f(x)=f\left(\sum_{i=0}^{7} x_{i} \beta_{i}\right)=\left(x_{0}, \ldots, x_{7}\right)
$$

Therefore, $f$ is onto.
Consequently, $(K O,+, ., *) \cong\left(R^{8},+, ., \circledast\right)$.
Proposition 2.7. 1) Every subalgebra $I$ of $K O$ is an ideal of $K O$ since, $\forall x \in K O$ and $a \in I$, the products $x * a \& a * x$ in $K O$ are still elements of $I$.
2) $K O$ is not simple since, by 1) above, $I_{1}=\left\{x_{1} \beta_{1}\right\}$ is an ideal.
3) $K O$ is not semisimple since every ideal of $K O$ is not simple.
4) $K O$ is Jordan algebra since, $\forall x, y \in K O$,
i) $x * y=y * x$
and
ii) $x^{2} *(y * x)=\left(x^{2} * y\right) * x$ are satisfied.
5) KO is not a Malcev algebra since $x * y \neq-y * x, \forall x, y \in K O$.

## References

[1] H. R. Yassein, N. M. G. Al-Saidi, HXDTRU cryptosystem based on hexadecnion algebra, Proceeding of 5th International Cryptology and Information Security Conference, Malaysia, 5, (2016), 1-14.
[2] H. R. Yassein, N. M. G. Al-Saidi, BCTRU: A New Secure NTRU Crypt Public Key System Based on a Newly Multidimensional Algebra, Proceeding of 6th International Cryptology and Information Security Conference, Malaysia, (2018), 1-11.
[3] H. R. Yassein, N. M. G. Al-Saidi, A. K. Farhan, A new NTRU cryptosystem outperforms three highly secured NTRU-analog systems through an innovational algebraic structure, Journal of Discrete Mathematical Sciences and Cryptography, 25, no. 2, (2020),523-542.
[4] H. H. Abo-Alsood, H. R. Yassein, Design of an alternative NTRU Encryption with High Secure and Efficient, International Journal of Mathematics and Computer Science, 16, no. 4, (2021), 1469-1477.
[5] S. H. Shahhadi, H. R. Yassein, NTRsh: A New Secure Variant of NTRUEncrypt Based on Tripternion Algebra, in Journal of Physics: Conference Series, IOP Publishing, (2021), 1-6.

