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Abstract

In this article, we present a new proof of the partial fraction ex-

pansion of the cotangent function using the theory of hypergeometric

functions.

1 Introduction

One of the most beautiful and useful series studied in classical analysis is the
partial fraction decomposition of the cotangent function:

π cot(πx) =
1

x
+

∞
∑

k=1

2x

x2 − k2
(1.1)
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The series for π cot(πx) was quite familiar to Euler who, in 1748 [1], dis-
covered a proof by taking the logarithmic derivative of the formula for the
infinite product of the sine function:

sin(πx) = πx

∞
∏

n=1

(

1−
x2

n2

)

.

(A similar test is shown in [2]).
In 1892, the German mathematician Friedrich Hermann Schottky [3] pre-
sented an elegant proof of the formula (1.1) using Eisenstein series. In the
same line of reasoning, the German mathematician Gustav Herglotz observed
that, in Schottky’s proof, there is no need to apply the maximum principle
at all times. Instead, he used what would later be known as the “Herglotz
trick” which provides an astonishing simple demonstration of (1.1) [4]. The
standard method of proving (1.1) can be found in complex variable texts
as an application of Cauchy’s residue theorem or as a consequence of the
Mittag-Leffler representation theorem as the interested reader can see, for
example, in [5], [6], [7], [8], [9]. Additionally, in [10], a proof is provided that
employs some elements of harmonic analysis, such as the Fourier transform,
the inversion theorem, and the Poisson summation formula. Finally, in [11],
the author ingeniously demonstrates the result using only certain skillfully es-
tablished trigonometric identities and some results from elementary calculus.

The objective of this article is to present a new proof of (1.1) using the theory
of hypergeometric functions.

2 Hypergeometric Series

The series
∑

∞

k=oCk is called a hypergeometric series if
Ck+1

Ck

is the quotient
of two polynomials in the variable k; that is,

Ck+1

Ck

=
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)

x

(k + 1)
. (2.2)

Using (2.2), observe that

Ck = C0

(

C1

C0

)(

C2

C1

)

· · ·

(

Ck

Ck−1

)

. (2.3)
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The expression given in (2.3) can be transformed into

Ck = C0

(

(a1)(a2) · · · (ap)x

(b1)(b2) · · · (bq)1

)(

(a1 + 1)(a2 + 1) · · · (ap + 1)x

(b1 + 1)(b2 + 1) · · · (bq + 1)2

)

· · ·

(

(a1 + k − 1)(a2 + k − 1) · · · (ap + k − 1)x

(b1 + k − 1)(b2 + k − 1) · · · (bq + k − 1)k
,

)

Ck = C0
(a1)k(a2)k · · · (ap)k x

k

(b1)k(b2)k · · · (bq)k k!
,

where (α)k is the Pochhammer symbol defined as

(x)n := x(x+ 1)(x+ 2) · · · (x+ n− 1), n > 0 ; (x)0 := 1.

In this way, if
∑

∞

k=oCk, is a hypergeometric series, then we can write it as:

∞
∑

k=o

Ck = C0

∞
∑

k=o

(a1)k(a2)k · · · (ap)k x
k

(b1)k(b2)k · · · (bq)k k!
.

Using hypergeometric function notation, we have

∞
∑

k=o

Ck = C0 pFq

(

a1, a2, · · ·ap
b1, b2, · · ·bq

∣

∣

∣

∣

x

)

.

In order to prove the identity (1.1), we need a summation formula for a
hypergeometric function 3F2, due to Lavoie [12]. This identity is expressed
in terms of the Gamma function Γ(x), defined by the limit

Γ(x) = lim
n→∞

n!nx−1

(x)n
, (2.4)

with x ∈ C, x 6= 0,−1,−2, · · ·
Some important properties of the Gamma function are:

Γ(x+ 1) = xΓ(x),

which for the particular case of non-negative integer n becomes

Γ(n + 1) = n!.
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For all x ∈ C, we have

Γ(x)Γ(1− x) =
π

sin(πx)
.

The proof of the Addition formula

3F2

(

a, b, c

2 + a− b, 2 + a− c

∣

∣

∣

∣

1

)

= 2−2c+1 Γ(2 + a− b) Γ(2 + a− c) Γ(b− 1) Γ(c− 1)

Γ(a− 2c+ 2) Γ(a− b− c+ 2) Γ(b) Γ(c)

×

{

Γ
(

a
2
− c+ 3

2

)

Γ
(

a
2
− b− c+ 2

)

Γ
(

a
2
+ 1

2

)

Γ
(

a
2
− b+ 1

) −
Γ
(

a
2
− c+ 1

)

Γ
(

a
2
− b− c + 5

2

)

Γ
(

a
2

)

Γ
(

a
2
− b+ 3

2

)

}

, (2.5)

can be found in [12].

3 Demonstration of the formula (1.1)

Let

S =

∞
∑

k=1

1

k2 − x2
. (3.6)

To write this sum as a hypergeometric series, let us examine the quotient
Ck+1

Ck

. By calculation, we get

Ck+1

Ck

=
(k − x)(k + x)

(k + 1− x)(k + 1 + x)
, (3.7)

taking into account the expression for Ck given in (2.3). The equality (3.7)
allows us to write

Ck = C1

(

(−x+ 1)(x+ 1)

(−x+ 2)(x+ 2)

)(

(−x+ 2)(x+ 2)

(−x+ 3)(x+ 3)

)

···

(

(−x+ k − 1)(x+ k − 1)

(−x+ k)(x+ k)

)

,

Ck = C1
(−x+ 1)k−1(x+ 1)k−1

(−x+ 2)k−1(x+ 2)k−1
.

Then the series given in (3.6) can be written as

S = C1

∞
∑

k=1

(−x+ 1)k−1(x+ 1)k−1

(−x+ 2)k−1(x+ 2)k−1

,
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using the change of variable k−1 = j, and the identity (1)j = j !. The above
expression for S takes the form

S = C1

∞
∑

j=0

(−x+ 1)j (x+ 1)j (1)j
(−x+ 2)j (x+ 2)j j !

,

that we recognize, according to the definition of a generalized hypergeometric
function, as a 3F2. More explicitly,

S = C1 3F2

(

1,−x+ 1, x+ 1
x+ 2,−x+ 2

∣

∣

∣

∣

1

)

. (3.8)

Using the addition formula (2.5) with the identification a = 1, b = −x + 1,
c = x+1, the hypergeometric function that appears on the right side of (3.8)
can be written as

S = C1
2−2x−1 (1− x2) Γ(x) Γ(−x)

(−2x)Γ(−2x)

×

{

π Γ(1 + x) Γ(1− x) − Γ
(

1
2
− x

)

Γ
(

1
2
+ x

)

Γ
(

1
2

)

Γ
(

1
2
+ x

)

Γ (1 + x)

}

.

Taking into account the properties of the gamma function, we obtain

S = C1

2−2x−1(1− x2)
(

−π
x sin(πx)

)

(−2x)Γ(−2x)Γ
(

1
2
+ x

)

Γ (1 + x) Γ
(

1
2

)

{

π2x

sin(πx)
−

π

cos(πx)

}

= C1
(1− x2) cos(πx)

(−2x)2

{

πx

sin(πx)
−

1

cos(πx)

}

,

and so

S = C1
(1− x2)

(−2x)2
{πx cot(πx) − 1} . (3.9)

From (3.7), (3.8), and (3.9), and noting that C1 =
1

1−x2 , we conclude that

∞
∑

k=1

1

k2 − x2
=

1

2x2
[1− πx cot(πx)] ,

∞
∑

k=1

2x

k2 − x2
=

1

x
− π cot(πx),

π cot(πx) =
1

x
+

∞
∑

k=1

2x

x2 − k2
�
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4 Conclusion

Using the theory of hypergeometric functions, we gave a proof of Euler’s
well-known formula for the expression of the cotangent function as a series
of partial fractions.
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[3] F.H. Schottky, Über das Additionstheorem der Cotangente, Jour. für
Reine u. Angew. Math., 110, (1892), 324–337.

[4] Martin Aigner, Günter M. Ziegler, Proofs from THE BOOK, Springer,
(2010).

[5] Lars V. Ahlfors, Complex Analysis, McGraw-Hill, New York,(1979),
187–189.

[6] James W. Brown, Ruel V. Churchill, Complex variables and Applica-

tions, McGraw-Hill, New York, (1984), 277–280.

[7] John B. Conway, Functions of one Complex Variable, Springer, New
York, (1978), 250–260.

[8] E. C. Titchmarsh, Theory of Functions, Oxford University Press, 1939,
112-113.

[9] B. P. Palka, An introduction to Complex function Theory, Springer-
Verlag, New York, 1991, 484-486.

[10] Walter Rudin, Real and Complex Analysis, McGraw-Hill, New York,
1987, 316.

[11] Paul Loya, Amazing and Aesthetic Aspects of Analysis, Springer, New
York, 2017, 556–559.

[12] J. Lavoie, F. Grondin, A. Rathie, K. Arora, Generalizations of Dixon’s

theorem on the sum of a 3F2, Math. Comp., 62, (1994), 267–276.


