A Characterization of Partition-Good and Partition-Wonderful Complete Multipartite Graphs

Peter Johnson, Shayne Nochumson
Department of Mathematics and Statistics
Auburn University
Auburn, AL 36849, USA
email: johnspd@auburn.edu, snk0018@auburn.edu

(Received November 7, 2023, Revised December 7, 2023, Accepted January 17, 2024, Published February 12, 2024)

Abstract

A simple graph G on n vertices is partition-good if and only if for all pairs (a, b) of positive integers such that $a+b=n, V(G)$ can be partitioned into sets A, B satisfying: $|A|=a,|B|=b$, and $G[A], G[B]$ are connected. G is partition-wonderful if and only if either (i) $n=1$, or (ii) $n>1, G$ is connected, and of all pairs (a, b) of positive integers such that $a+b=n, V(G)$ can be partitioned into sets A, B satisfying: $|A|=a,|B|=b$, and $G[A], G[B]$ are partition-wonderful. We characterize the partition-good and the partition-wonderful among the complete multipartite graphs, and, along the way, prove some elementary results about these graph properties.

1 Introduction

All following graphs are finite and simple. A subgraph of a graph G is rainbow with respect to a coloring of $E(G)$ if and only if no color appears on more than one edge of the subgraph. It is well known that if G is a connected graph on n vertices, and $E(G)$ is colored with n or more colors, then there

Key words and phrases: Complete multipartite graph, connected graph, induced subgraph, partition.
AMS (MOS) Subject Classifications: 05C40, 05C42, 05C99.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
must be a rainbow cycle in G with respect to the coloring. (See [1] and [2].) On the other hand, each such G can be edge colored with exactly $n-1$ colors appearing such that no cycle in G is rainbow. In conformity with [1],[3], [4], and [5], we will call such a coloring a JL coloring of G.

There is a straightforward way to obtain JL colorings of a connected graph G. You partition $V(G)$ into non-empty sets A, B such that the induced subgraphs $G[A], G[B]$ are connected. (One way to do this: take a spanning tree in G and remove one edge from it.) Color all of the edges in the edge cut $[A, B]$ with one color that will never be used again. Iterate the process on $G[A], G[B]$ and continue until all of the edges of G are colored.

The main result of [5] is that for every simple finite connected graph G, every JL coloring is obtainable by an instance of the process just described. It is an easy corollary of this result that if G is connected, on n vertices, then each JL coloring of G is the restriction to $E(G)$ of a JL coloring of the complete graph K on $V(G)$. To put it another way: each JL coloring of G can be extended to a JL coloring of K. This raises the question (first raised by a comment from Luc Teirlinck, in seminar, for which we thank him): Which connected graphs G have the property that for every JL coloring of K_{n} where $n=|V(G)|$, there is a subgraph \tilde{G} of K_{n} isomorphic to G such that the restriction of the coloring of K_{n} to the edges of \tilde{G} gives a JL coloring of \tilde{G} ?

This property is partition-wonderfulness, defined recursively and quite differently in the next section. A weaker property, partition-goodness, arises from contemplation of the first stage of the JL coloring construction process described above: For which connected graphs G on n vertices can the cardinalities $a=|A|$ and $b=|B|$ in the first stage of the process be arbitrarily specified?

2 Preliminary Definitions

Definition 2.1. Let G be a simple graph. A partition of $V(G)$ into subsets A and B is good if and only if $G[A]$ and $G[B]$ are connected.

Definition 2.2. A graph G is partition-good if and only if for any pair (a, b) of positive integers such that $a+b=|V(G)|$, there is a good partition of $V(G)$ into A and B such that $|A|=a$ and $|B|=b$.

Note the following two special cases of partition-good graphs:
i. $\overline{K_{2}}$
ii. $K_{1}+K_{2}$

Claim: $\overline{K_{2}}$ and $K_{1}+K_{2}$ are the only disconnected partition-good graphs.

Proof:

It is clear that $\overline{K_{2}}$ and $K_{1}+K_{2}$ are partition-good.

Suppose that G is partition-good and disconnected. Let $c=\max \{|V(H)|$: H is a connected component of $G\}$.

Claim 1: G has exactly two components.

Because G is partition-good and $0<c<|V(G)|=n$, there is a partition of $V(G)$ into sets C and $B,|C|=c$ and $|B|=n-c$, such that both $G[C]$ and $G[B]$ are connected. Then each of these subgraphs must be subgraphs of connected components of G. By the definition of $c, G[C]$ must be one of those connected components; then $G[B]=G-G[C]$ is a connected component of G. Thus G has two connected components.

$$
\text { Claim: }|V(G)|=c+1
$$

Since G has more than one component, it must be the case that $|V(G)| \geq$ $c+1$. Suppose, $|V(G)|>c+1$. By assumption, G is partition-good, so there must exist $A \subseteq V(G)$ such that $a=|A|=c+1$, and $G[A]$ is connected. This is not possible because G has no connected subgraph of order greater than c. Therefore, $|V(G)|=c+1$. Since G only has two components, one component must be an isolate.

$$
\text { Claim: } c \in\{1,2\}
$$

Let H_{s} denote the component of G that is an isolate and H_{c} denote G 's other component of order c. Suppose that $c>2$ and consider $a=2$. If $G[A]$ is to be connected, then both vertices must lie in H_{c}. Since both vertices of A lie in $H_{c}, G[V(G) \backslash A]$ must have one vertex in H_{s} and $c-2$ vertices in H_{c}. Thus, $G[V(G) \backslash A]$ is not connected which contradicts the assumption that G is partition-good. Therefore, either $c=2$ and $G=K_{1}+K_{2}$ or $c=1$ and $G=\overline{K_{2}}$.

Definition 2.3. Let G be a simple graph. K_{1} is partition-wonderful. If $|V(G)|>1$, then G is partition-wonderful if and only if the following hold:

1. G is connected.
2. For every pair (a, b) of positive integers such that $a+b=|V(G)|$ there are disjoint sets $A, B \subseteq V(G)$ such that $|A|=a,|B|=b$, and $G[A]$ and $G[B]$ are partition-wonderful.

Lemma 2.4. Every path is partition-wonderful.

Proof:

The proof that P_{n}, the path on n vertices, is partition-wonderful will be by induction on n.

$$
P_{1}=K_{1}, \text { which is partition-wonderful by definition. }
$$

Suppose that $n>1$ and a, b are positive integers such that $a+b=n$. Let A consist of a consecutive vertices along the path $P=P_{n}$ starting from one end, and let $B=V(P) \backslash A$. Clearly, $P[A]=P_{a}$ and $P[B]=P_{b}$. Since $a, b<n, P_{a}$ and P_{b} are partition-wonderful, by the induction hypothesis. Since a, b were arbitrarily chosen, it follows that P is partition-wonderful.

3 Preliminary Results

Proposition 3.1. Let G be a simple graph. If G has a partition-wonderful spanning subgraph, then G is partition-wonderful.

Proof:

Proof by induction on $n=|V(G)|$: Suppose that G has a partition-wonderful spanning subgraph H. Then for all pairs (a, b) such that a, b are positive integers and $a+b=|V(G)|=|V(H)|$, there exists a partition of $V(H)$ into A and B such that $|A|=a,|B|=b$, and $H[A]$ and $H[B]$ are partitionwonderful.

Then $G[A], G[B]$ each has a partition-wonderful spanning subgraph and is therefore partition-wonderful by the induction hypothesis. Since this holds for all such pairs (a, b), it follows that G is partition-wonderful.

Corollary 3.2. Let G be a simple graph. If G has a Hamilton path, then G is partition-wonderful.

The converse of Corollary 3.2 is false. Consider the following:

G is clearly partition-wonderful but has no Hamilton path.
Lemma 3.3. If G is partition-wonderful, then G is partition-good.
Proof: Clear, by the definition of partition-wonderful.

4 Results for Complete Multipartite Graphs

Theorem 4.1. Let $G=K_{1, t}$. G is partition-good if and only if $t \in\{1,2\}$.

Proof:

If $t=1, G=K_{1,1}=P_{2}$ and if $t=2, G=K_{1,2}=P_{3}$. Since all paths are partition-good, G is partition-good both when $t=1$ and $t=2$. Consider $t \geq 3 . G=K_{1, t}$, so $|V(G)|=t+1$. Let v_{0} denote the central vertex and $v_{i}, i \in\{1, \ldots, t\}$ be the leaves of G. Let $a=|A|$ and $b=|B|$ where $a=2$ and $b=t-1$. Then, to be connected, $G[A]$ must be a P_{2} formed by taking A to be v_{0} and any single v_{i} where $i \in\{1, \ldots, t\}$. Since $B=V(G) \backslash A, G[B]$ must be the remaining $t-1$ vertices that were leaves in G forming $\overline{K_{t-1}}$. Thus, $G[B]$ is not connected and $G=K_{1, t}$ is not partition-good.

Corollary 4.2. Let $G=K_{1, t}$. G is partition-wonderful if and only if $t \in$ $\{1,2\}$.

Theorem 4.3. Let $G=K_{p_{1}, p_{2}}$. G is partition-good for all $2 \leq p_{1} \leq p_{2}$.

Proof:

Let $G=K_{p_{1}, p_{2}}$ such that $2 \leq p_{1} \leq p_{2}$ and $p_{1}+p_{2}=n$. Let a, b, A, and B be as in Definition 2.2 with $a \leq b$, and let the parts of G be P_{1} and P_{2} such that $\left|P_{1}\right|=p_{1}$ and $\left|P_{2}\right|=p_{2}$. If $a=1$, let A be any vertex from P_{1}; then $G[A]$ is an isolate. Then $G[B]=K_{p_{1}-1, p_{2}}$, and $G[A], G[B]$ are both connected. For $a>1$, choose A, B as follows. Let A consist of a single vertex from P_{1} and $t=a-1$ vertices from P_{2} and B consist of $p_{1}-1$ vertices from P_{1} and $s=p_{2}-t$ vertices from P_{2}. Then, $G[A]$ is a $K_{1, t}$ and $G[B]$ is a $K_{p_{1}-1, s}$, both of which are connected.

Theorem 4.4. Let $G=K_{p_{1}, p_{2}}$ where $2 \leq p_{1} \leq p_{2}$. G is partition-wonderful if and only if $p_{2} \leq p_{1}+1$.

Proof:

Let P_{1}, P_{2} be the parts of G where $\left|P_{i}\right|=p_{i}$ for $i \in\{1,2\}$. If $p_{2} \leq p_{1}+1$, then $p_{2} \in\left\{p_{1}, p_{1}+1\right\}$. Then G has a Hamilton path, and, by Corollary 3.2, is partition-wonderful.

Suppose that $p_{2} \geq p_{1}+2$. We will show that G is not partition-wonderful by induction on the order of $G, n=p_{1}+p_{2}$. Minimally, $G=K_{2,4}$ as $p_{1} \geq 2$. We shall show that $G=K_{2, p_{2}}$ is not partition-wonderful for all $p_{2} \geq 4$. Let $a=2$ and $b=\left(p_{2}+2\right)-2=p_{2}$, and suppose that $V(G)$ is partitioned into A and B such that $|A|=2,|B|=p_{2}$, and $G[A], G[B]$ are connected. Then $A=\{x, y\}$ for some $x \in P_{1}, y \in P_{2}$, so B consists of one vertex from P_{1} and $p_{2}-1 \geq 3$ vertices from P_{2}. Then $G[B]=K_{1, p_{2}-1}$, which is not partition-wonderful either by Corollary 4.2 or by Lemma 3.3. Thus, G is not partition-wonderful.

Now suppose that $3 \leq p_{1}$ and $p_{1}+2 \leq p_{2}$, so $2 \leq p_{1}-1 \leq\left(p_{2}-1\right)-2$. Therefore, again taking $a=2, b=p_{1}+p_{2}-2$ and A and B as usual, $G[B]=K_{p_{1}-1, p_{2}-1}$ is not partition-wonderful, by the induction hypothesis. Thus $G=K_{p_{1}, p_{2}}$ is not partition-wonderful, because no partition A, B of $V(G)$ can be found such that $|A|=2,|B|=n-2$, and both $G[A]$ and $G[B]$ are partition-wonderful.

Theorem 4.5. If $r>2$ and p_{1}, \ldots, p_{r} are positive integers, then $G=K_{p_{1}, \ldots, p_{r}}$ is partition-good.

Proof:

Without loss of generality, $p_{1} \leq \ldots \leq p_{r}$. Let P_{1}, \ldots, P_{r} be the parts of $G=K_{p_{1}, \ldots, p_{r}}$ so that $\left|P_{j}\right|=p_{j}$ We will proceed by induction on $|V(G)|=$ $n=\sum_{j=1}^{r} p_{j}$. The smallest n can be is $n=3$ with $r=3$ and $p_{1}=p_{2}=p_{3}=1$. Then, $G=K_{3}$, which is clearly partition-good.
Suppose that $n>3$ and that $p_{r}>1$ (as $p_{r}=1$ gives $G=K_{r}$ which is partition-good for all r). We may, also, assume that $b \geq n-b=a>1$, since the case $a=1, b=n-1$ is easily disposed of. Let $x \in P_{r}$. Consider $H=G-x=K_{p_{1}, \ldots, p_{r-1}}$. By the induction hypothesis, we can partition $V(H)=V(G) \backslash\{x\}$ into sets A, B^{\prime} such that $|A|=a,\left|B^{\prime}\right|=b-1$, and $H[A], H\left[B^{\prime}\right]$ are connected. Take $B=B^{\prime} \cup\{x\}$. Since $H \subseteq G, G[A]=H[A]$ and the only way that $G[B]$ is not connected is if $B^{\prime} \subseteq P_{r} \backslash\{x\}$. However,
B^{\prime} is connected, so, in that case, $\left|B^{\prime}\right|=1=b-1$. Then, $a=b=2$ and $n=4$ since $1<a \leq b$. Since $r \geq 3, G=K_{1,1,2}$ which has a Hamilton path, and, thus, is partition-good by Corollary 3.2.

Lemma 4.6. Suppose that $r>2$ and p_{1}, \ldots, p_{r} are integers satisfying $1 \leq$ $p_{1} \leq \ldots \leq p_{r}$. Then $G=K_{p_{1}, \ldots, p_{r}}$ has a Hamilton path if and only if

$$
p_{r} \leq\left(\sum_{j=1}^{r-1} p_{j}\right)+1
$$

Proof:

Let the parts of G be P_{1}, \ldots, P_{r} of cardinalities p_{1}, \ldots, p_{r}, respectively. Let $n=|V(G)|=\sum_{j=1}^{r} p_{j}$.

If G has a Hamilton path Q, then $|E(Q)|=n-1$. At most two vertices of P_{r} have degree 1 on Q. The others have degree 2 on Q and each edge incident to a vertex in P_{r} has its other end in $\bigcup_{j=1}^{r-1} P_{j}$. Therefore,

$$
\begin{aligned}
n-1=|E(Q)| & \geq \mid\left\{\text { edges of } Q \text { incident to vertices in } P_{r}\right\} \mid \\
& \geq 2+2\left(p_{r}-2\right)=2 p_{r}-2
\end{aligned}
$$

Then,

$$
\begin{aligned}
2 p_{r} & \leq n+1=p_{r}+\left(\sum_{j=1}^{r-1} p_{j}\right)+1 \\
\Longrightarrow p_{r} & \leq\left(\sum_{j=1}^{r-1} p_{j}\right)+1 .
\end{aligned}
$$

Now, suppose that $p_{r} \leq\left(\sum_{j=1}^{r-1} p_{j}\right)+1$. If $p_{r}=1$, then $G=K_{r}$ which has a Hamilton cycle, and thus a Hamilton path. If $p_{r} \in\left\{\left(\sum_{j=1}^{r-1} p_{j}\right),\left(\sum_{j=1}^{r-1} p_{j}\right)+1\right\}$, then the complete bipartite graph with bipartition $P_{r}, \bigcup_{j=1}^{r-1} P_{j}$, which is a spanning subgraph of G, has a Hamilton path, and so, consequently, G has one
as well.
Therefore, we can assume that $1<p_{r}<\left(\sum_{j=1}^{r-1} p_{j}\right)$. We proceed by induction on n. The smallest value of n possible when $1<p_{r}<\left(\sum_{j=1}^{r-1} p_{j}\right)$ is 5 , and the graph is $K_{1,2,2}$, which has a Hamilton cycle. Now, suppose that $n>5$. Let $x \in P_{r}$ and $G^{\prime}=G-x$. Then $G^{\prime}=K_{q_{1}, \ldots, q_{r}}$ with $1 \leq q_{1} \leq \ldots \leq q_{r}$, where either

1. $q_{r}=p_{r}-1$ and $q_{j}=p_{j}$ for $j=1, \ldots, r-1$, or
2. $q_{r}=p_{r-1}=p_{r}, q_{j}=p_{r}-1$ for some $j \in\{1, \ldots, r-1\}$ such that $p_{j}=p_{r}$ and $q_{i}=p_{i}$ for all $i \in\{1, \ldots, r-1\} \backslash\{j\}$.

In case 1, either $q_{r}=1$, in which case $G^{\prime}=K_{r}$, or $1<q_{r}=p_{r}-1<$ $\left(\sum_{j=1}^{r-1} p_{j}\right)-1=\left(\sum_{j=1}^{r-1} q_{j}\right)-1$.
In either subcase, G^{\prime} has a Hamilton path Q^{\prime} : in the second subcase, the existence of Q^{\prime} is implied by the induction hypothesis.

In case 2, we have

$$
\begin{aligned}
\sum_{j=1}^{r-1} q_{j} & =\sum_{j=1}^{r-1} p_{j}-1 \\
& =p_{r-1}+\sum_{j=1}^{r-2} p_{j}-1 \\
& =p_{r}+\sum_{j=1}^{r-2} p_{j}-1 \geq p_{r}=q_{r}>1 .
\end{aligned}
$$

When $p_{r}+\sum_{j=1}^{r-2} p_{j}-1>p_{r}, G^{\prime}$ has a Hamilton path Q^{\prime} by the induction hypothesis. In case of equality (which is possible only when $r=3, p_{1}=1$), the existence of Q^{\prime} follows from previous arguments.

If Q^{\prime} contains an edge $y z$ with $y \in P_{i}, z \in P_{j}, 1 \leq i<j<r$, then we can obtain a Hamilton path in G by replacing $y z$ by two edges $y x$ and $x z$. If no such edge $y z$ exists, then every edge of Q^{\prime} has one end in $P_{r} \backslash\{x\}$. But then,

$$
\begin{aligned}
\left|E\left(Q^{\prime}\right)\right|=n-2 & =p_{r}+\sum_{j=1}^{r-1} p_{j}-2 \\
& \leq 2\left(p_{r}-1\right) \\
\Longrightarrow p_{r} & \geq \sum_{j=1}^{r-1} p_{j}
\end{aligned}
$$

contrary to supposition.
Remark: The proof of Lemma 4.6 can be modified to prove the following, a generalization of one of the main results of [6].
If $r \geq 3$ and integers p_{1}, \ldots, p_{r} satisfy $1 \leq p_{1} \leq \ldots \leq p_{r}$ then $K_{p_{1}, \ldots, p_{r}}$ has a Hamilton cycle if and only if $p_{r} \leq \sum_{j=1}^{r-1} p_{j}$.

We strongly suspect that this is well known; what's more, Lemma 4.6 can be deduced easily from it.

Theorem 4.7. Let G be a complete multipartite graph with r partite sets of sizes $1 \leq p_{1} \leq p_{2} \leq \ldots \leq p_{r-1} \leq p_{r}$ where $r>2$. Then G is partitionwonderful if and only if

$$
p_{r} \leq\left(\sum_{j=1}^{r-1} p_{j}\right)+1
$$

Proof:

Suppose that $p_{r} \leq\left(\sum_{j=1}^{r-1} p_{j}\right)+1$; then, by Lemma 4.6, G has a Hamilton path. Therefore, by Corollary 3.2, G is partition-wonderful.

Now, suppose that $p_{r}>\left(\sum_{j=1}^{r-1} p_{j}\right)+1$. Note that this implies that $p_{r}-1>$ $p_{r-1}+1$. We will proceed by induction on $|V(G)|=n=\sum_{j=1}^{r} p_{j}$. Minimally, $G=K_{1,1,4}$. Let a, b, A, B be as in Definition 2.3, and consider $a=2, b=4$. It must be that $G[A]=K_{2}$ where at least one endpoint lies in either P_{1} or P_{2}. Suppose that $A=\{x, y\}$, and, without loss of generality, suppose that
$x \in P_{1}$. Then $y \in P_{2}$ or $y \in P_{3}$. If $y \in P_{2}$, then $B=P_{3}$ and $G[B]$ is not connected. If $y \in P_{3}, G[B]=K_{1,3}$ which is not partition-wonderful (by Corollary 4.2). Thus $G=K_{1,1,4}$ is not partition-wonderful.

Assume that $n>6$ and suppose that all complete multipartite graphs such that $r>2$ and $p_{r}>\left(\sum_{j=1}^{r-1} p_{j}\right)+1$ with order less than n are not partitionwonderful. Suppose that $a=2$ and $b=n-2$. Then, either $A=\{x, y\}$ such that $x \notin P_{r}, y \notin P_{r}$ or $A=\{x, y\}$ and either $x \in P_{r}$ or $y \in P_{r}$. In either case, $G[A]=K_{2}$.

Case 1: $A=\{x, y\}$ such that $x \notin P_{r}, y \notin P_{r}$
$G[B]=K_{p_{1}^{\prime}, \ldots p_{r-1}^{\prime}, p_{r}^{\prime}}$ where $p_{j}^{\prime}=p_{j}$ (for $1 \leq j \leq r$) if $x \notin P_{j}$ and $y \notin P_{j}$ and $p_{j}^{\prime}=p_{j}-1$ if $x \in P_{j}$ or $y \in P_{j}$. Then,

$$
\sum_{j=1}^{r-1} p_{j}^{\prime}=\left(\sum_{j=1}^{r-1} p_{j}\right)-2<\left(\sum_{j=1}^{r-1} p_{j}\right)+1<p_{r}=p_{r}^{\prime}
$$

Clearly $|G[B]|<n$, so by the induction hypothesis, $G[B]$ is not partitionwonderful.

Case 2: $A=\{x, y\}$ such that $x \in P_{r}$ or $y \in P_{r}$
Without loss of generality, assume that $x \in P_{r}$. Then $G[B]=K_{p_{1}^{\prime}, \ldots p_{r-1}^{\prime}, p_{r}^{\prime}}$ where for $1 \leq j \leq r, p_{j}^{\prime}=p_{j}$ if $x, y \notin P_{j}$ and $p_{j}^{\prime}=p_{j}-1$ if $x \in P_{j}$ or $y \in P_{j}$. Note that $p_{r}-1>p_{r-1}+1$ implies that $p_{r}^{\prime}=p_{r}-1$ is the largest of the p_{j}^{\prime}. By assumption, $|B|=b=n-2$, and

$$
p_{r}>\left(\sum_{j=1}^{r-1} p_{j}\right)+1=\left(\left(\sum_{j=1}^{r-1} p_{j}^{\prime}\right)+1\right)+1
$$

since $y \in P_{j}$ for some $1 \leq j \leq r-1$. However, $p_{r}=p_{r}^{\prime}+1$, so

$$
\begin{aligned}
p_{r}^{\prime} & +1>\left(\left(\sum_{j=1}^{r-1} p_{j}^{\prime}\right)+1\right)+1 \\
& \Longrightarrow p_{r}^{\prime}>\left(\sum_{j=1}^{r-1} p_{j}^{\prime}\right)+1 .
\end{aligned}
$$

Then, by the induction hypothesis, $G[B]$ is not partition-wonderful. Therefore, when $a=|A|=2$, there is no partition-wonderful $G[B]$. Therefore, $G=K_{p_{1}, \ldots, p_{r}}$ is partition-wonderful if and only if $p_{r} \leq\left(\sum_{j=1}^{r-1} p_{j}\right)+1$.

References

[1] Adam Gouge, Dean Hoffman, Peter Johnson, Laura Nunley, Luke Paben, Edge colorings of K_{n} which forbid rainbow cycles, Utilitas Mathematica, 83, (2010), 219-232.
[2] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory, 6, no. 3, (2004), 211-216.
[3] Peter Johnson, Andrew Owens, Edge colorings of complete multipartite graphs forbidding rainbow cycles, Theory and Applications of Graphs, 4, no. 2, Article 2, (2017), 9pp.
[4] Peter Johnson, Claire Zhang, Edge colorings of $K_{m, n}$ with $m+n-1$ colors which forbid rainbow cycles, Theory and Applications of Graphs, 4, no. 1, Article 1, (2017), 17pp.
[5] Dean Hoffman, Paul Horn, Peter Johnson, Andrew Owens, On rainbow-cycle-forbidding edge colorings of finite graphs, Graphs and Combinatorics, 35, (2019), 1585-1596.
[6] J.V. Kureethara, Hamiltonian cycle in complete multipartite graphs, Annals of Pure and Applied Math., 13, no. 2, (2017), 223-228.

