International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 613–620

On the commutativity probability in certain finite groups

M CS

Khaled Alajmi

Department of Mathematics Faculty of Basic Education Public Authority for Applied Education and Training Ardiyah, Kuwait

email: khsnf@hotmail.com

(Received October 20, 2023, Revised November 21, 2023, Accepted November 28, 2023, Published February 12, 2024)

Abstract

The purpose of this paper is to compute the probability Pr(G) that two elements of the group G, drawn at random with replacement, commute; that is,

 $\Pr(G) = \frac{\text{Number of ordered pairs } (x, y) \in G \times G \text{ such that } xy = yx}{|G \times G| = |G|^2}$

In particular, we compute Pr(G) for some groups such as the extraspecial groups of order p^3 , p prime, for the permutation groups $G = S_n$ and $G = A_n$, $n \ge 5$, for 10 non-abelian groups of order p^4 and for simple groups of certain type.

1 Introduction.

In this paper, all groups are finite. This notion of probability has been investigated by Gustafson in [11], where he studied the probability that two group elements commute. In [15], Rusin has considered the probability that two elements of a finite group commute. In particular, he explicitly computed

Key words and phrases: Probability, nilpotent group, commutator subgroup, conjugacy classes.

AMS (MOS) Subject Classifications: 20P05.

ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

Pr(G) for groups G with $G' \leq Z(G)$ or $G' \cap Z(G) = \{1\}$ where 1 is the identity element of G, and classified the groups for which this probability is greater than $\frac{11}{32}$. In [12], Gallagher has investigated the number of conjugacy classes in a finite group G. For more information about this concept one may refer to [7], [9], [13], [14], [16] and [15].

2 Notations and preliminaries.

Our notations are fairly standard. If G is a group, then Z(G) denotes the center of G and G' is the commutator subgroup of G or the derived group of G. The number of the conjugacy classes of a finite group of G is denoted by $|G^C|$. The semidirect product of groups G and H is denoted by $G \rtimes H$.

Definition 2.1. ([10], [13]) Let G be a finite p-group for which G/Z(G) is elementary abelian and Z(G) has order p. Then G is called an extraspecial group.

Example 2.1. The group P^3 , the dihedral group D_8 , and the quaternion group Q_8 are extraspecial groups.

Definition 2.2. ([10], [13]) Let G be a finite group. Then G is called nilpotent with nilpotency class 2 if and only if $[G, G, G] := [[G, G], G] = \{1\}$ or equivalently $G' \leq Z(G)$.

Theorem 2.1. [15] If G is a p-group with $G' \leq Z(G)$, then

$$\Pr(G) = \frac{1}{|G'|} \left(1 + \sum_{\substack{G'/K \\ cyclic}} \frac{(p-1) \cdot [G':K]/p}{p^{n(K)}} \right),$$

where $p^{n(K)} = [G/K : Z(G/K)] \ge [G' : K]^2$.

Proposition 2.1. [15] If H is a p-group with $H' \leq Z(H)$ and H' cyclic, then $H/Z(H) \cong \prod_i (C_{p^{n_i}} \times C_{p^{n_i}})$ with all $n_i \leq k$, $n_1 = k$, where $p^k = |H'|$. In particular, [H : Z(H)] is square and is at least $|H'|^2$.

Remark 2.1. The number of the conjugacy classes of a finite group G is a significant quantity. It is used to measure the probability that two elements commute:

"Let G be a finite group. Then the commutativity degree of G is $P_r(G) = k/|G|$, where $k = |G^C|$ ".

On the commutativity probability in certain finite groups

615

Theorem 2.2. [1] For the symmetric group S_n of cycle length $L = \{0, 2, 3, ..., n\}$, the number of conjugacy classes uniquely determined by a cycle of length $k \in L$ is M_k , where M_k is the number of solutions of $k_i \in L$ for the inequality $k + \sum_{k \geq k_i \in L} k_i \leq n$. Therefore, $|G^C| = \sum_{k \in L} M_k$.

3 Results

In this section, we will show our main results corresponding to Pr(G) for some selective groups G.

Theorem 3.1. Let G be an extraspecial group of order p^3 , p prime. Then

$$\Pr(G) = \frac{p^2 + p - 1}{p^3}$$

Proof. As $|G| = p^3$, Z(G) > 1. This implies that $|G/Z(G)| \le p^2$. Hence G/Z(G) is abelian which means $(G/Z(G))' = \{1\} = G'Z(G)/Z(G)$. It follows that $G' \le Z(G)$; i.e., G is of nilpotency class 2. As Z(G) has order p, $|G'| = \mathbb{Z}_p$. The only proper subgroup of G' is $K = \{1\}$, which has index p in G'. Applying Theorem 2.1, we get

$$\Pr(G) = \frac{1}{|G'|} \left(1 + \sum_{\substack{G'/K \\ cylic}} \frac{(p-1) [G':K] / p}{p^{n(K)}} \right),$$

where using Proposition 2.1

$$p^{n(K)} = [G/K : Z(G/K)] \ge [G' : K]^2$$

Consequently, $\Pr(G) = \frac{1}{p} \left(1 + \frac{(p-1)}{p^2} \right)$, where $G/Z(G) \cong \mathbb{Z}_p^2 = \mathbb{Z}_p \times \mathbb{Z}_p$.

Proposition 3.1. For any finite group G, $\Pr(G) \leq \frac{1}{4} + \frac{3}{4} \frac{1}{|G'|}$, where G' is the commutator subgroup of G. If $G = S_n, n \geq 5$, then $\Pr(G) \leq \frac{1}{16} + \frac{15}{16} \cdot \frac{1}{2n!}$ and if $G = A_n, n \geq 5$, then $\Pr(G) \leq \frac{1}{9} + \frac{8}{9} \cdot \frac{1}{2n!}$.

Proof. Using character theory ([13], Chapter 5), the degree equation of a finite group G is $|G| = \sum_{i=1}^{k} r_i^2$, where k is the number of conjugacy classes

of G, and the r_i are positive integers. More precisely, [G:G'] of these are equal to 1 . So

$$|G| = s + \sum_{s+1}^k r_i^2$$

where

$$[G:G'] = s \ge s + 4(k - s) = 4k - 3s.$$

It follows that $k \leq \frac{1}{4}(|G|+3s)$ and $\Pr(G) = \frac{k}{|G|} \leq \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{|G'|}$. If $G = S_n$, then $|G| \ge 120$ for $n \ge 5$ and $k \ge 7$ and if $G = A_n$, then

If $G = S_n$, then $|G| \ge 120$ for $n \ge 5$ and $k \ge 7$ and if $G = A_n$, then $|G| \ge 60$ for $n \ge 5$ and $k \ge 5$. Again from the degree equation of G it follows that $|G| \ge [G:G'] + 64 (k - [G:G'])$ if $G = S_n, n \ge 5 = 16k - 15 [G:G']$. This implies that $k \le \frac{1}{16} (|G| + 15 [G:G'])$ and so $\Pr(G) \le \frac{1}{16} + \frac{15}{16} \cdot \frac{2}{n!}$, where $S'_n = A_n$. Arguing in a similar manner for $G = A_n$, one obtains $P_r(G) \le \frac{1}{9} + \frac{8}{9} \cdot \frac{1}{2n!}$, as $A'_n = A_n$ for $n \ge 5$

Example 3.1. Let $G = S_{12}$. By the above proposition, $P_r(S_{12}) \leq \frac{1}{16} + \frac{15}{16} \cdot \frac{2}{12!} \approx \frac{1}{16} + \frac{2}{12!}$.

Remark 3.1. In [1], the following result has been proved for $P_r(S_n)$. Let $G = S_n$ be the symmetric group of cycle lengths $L = \{0, 2, 3, ..., n\}$, and let M_k be the number of solutions of $k_i \in L$ for the inequality $k + \sum_{k \ge k_i \in L} k_i \le n$.

Then
$$|G^C| = \sum_{k \in L} M_k$$
 and $P_r(G) = \frac{\sum_{k \in L} M_k}{|G|}$

For $G = S_{12}$, the number of solutions has been given for the above inequality using the GAP program [5] for computation where $P_r(S_{12})$ was computed as $\frac{77}{12!}$. This is worth comparing with the result obtained in the above example.

616

Remark 3.2. [6] There are 10 non-abelian groups of order p^4 ; namely,

1.
$$F_{1} = \left\langle a, b | a^{p^{2}} = b^{p} = [a, [a, b]] = [b, [a, b]] = [a, b]^{p} = e \right\rangle \cong (\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}) \rtimes \mathbb{Z}_{p}.$$

2. $F_{2} = \left\langle a, b | a^{p^{2}} = b^{p^{2}} = e, [b, a] = b^{p} \right\rangle \cong \mathbb{Z}_{p^{2}} \rtimes \mathbb{Z}_{p^{2}}.$
3. $F_{3} = \left\langle a, b | a^{p^{3}} = b^{p} = e, [b, a] = a^{p^{2}} \right\rangle \cong \mathbb{Z}_{p^{3}} \rtimes \mathbb{Z}_{p}.$
4. $F_{4} = \langle a, b, c | a^{p} = b^{p} = c^{p} = d^{p} = [a, c] = [b, c] = [a, d] = [b, d] = [c, d] = e \rangle \cong \mathbb{Z}_{p} \times ((\mathbb{Z}_{p} \times \mathbb{Z}_{p}) \rtimes \mathbb{Z}_{p}), \text{ where } d = [a, b].$
5. $F_{5} = \left\langle a, b, c | a^{p^{2}} = b^{p} = c^{p} = [a, c] = [b, c] = e, [b, a] = a^{p} \right\rangle \cong \mathbb{Z}_{p} \times (\mathbb{Z}_{p^{2}} \rtimes \mathbb{Z}_{p}).$
6. $F_{6} = \left\langle a, b, c | a^{p^{2}} = b^{p} = c^{p} = [a, b] = [a, c] = e, [c, b] = a^{p} \right\rangle \cong (\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}) \rtimes \mathbb{Z}_{p}.$
7. $F_{7} = \langle a, b | a^{p} = b^{p} = c^{p} = [a, c]^{p} = [b, c] = e, [a, [a, c]] = [b, [a, c]] = e \rangle \cong (\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}) \rtimes \mathbb{Z}_{p}.$
8. $F_{8} = \left\langle a, b | a^{p^{2}} = b^{p} = [a, b]^{p} = [b, [a, b]] = e, [a, [a, b]] = a^{p} \right\rangle \cong (\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p}) \rtimes \mathbb{Z}_{p}.$
9. $F_{9} = \left\langle a, b | a^{p^{2}} = b^{p} = [a, b]^{p} = [a, [a, b]] = e, [b, [a, b]] = a^{p} \right\rangle \cong (\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}) \rtimes \mathbb{Z}_{p}.$

10. $F_{10} = \left\langle a, b | a^{p^2} = b^p = [a, b]^p = [a, [a, b]] = e, [b, [a, b]] = a^{2p} \right\rangle \cong (\mathbb{Z}_{p^2} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_p.$

Theorem 3.2. Let $G = F_i$, $1 \le i \le 6$. Then $P_r(G) = \frac{1}{p}(1 + \frac{(p-1)}{p^2}) = \frac{p^2 + p - 1}{p^3}$.

Proof. As |G'| = p, p prime, and G is nilpotent of nilpotency class 2 [13], the only proper subgroup of G' is $\{1\}$ which has index p. Applying Theorem 2.1 $P_r(G) = \frac{1}{p} (1 + \sum_{G'/K} \frac{(p-1)[G':K]/p}{p^{n(K)}}), p^{n(K)} \ge |[G':K]|^2 = p^2 \text{ and } G/Z(G) \cong \mathbb{Z}_{p^{2n}}$ y Proposition 2.1. In our case, n = 2.

Theorem 3.3. [3] If G is a finite group of nilpotency class c, Then the number of the conjugacy classes of G is $|G^{C}| \leq u$, where u = |G| - r and $r = \frac{|G| - |Z(G)|}{c}.$

Corollary 3.1. Let G be as in the above theorem. Then $P_r(G) \leq \frac{u}{|G|}$.

The next remarks can be obtained by Corollary 3.1 to find an upper bound of Pr(G) for all the groups F_i , i = 1, 2, ..., 10.

Remark 3.3. Let $G = F_i$, $1 \le i \le 6$. Then $P_r(G) \le \frac{1}{2} - \frac{1}{2p^2}$.

Proof. These groups are nilpotent of nilpotency class c = 2, $|Z(G)| = p^2$ [6]. Then $r = \frac{p^4 - p^2}{2} = u$. Hence $P_r(G) \le (\frac{p^4 - p^2}{2})/p^4 = \frac{1}{2} - \frac{1}{2p^2}$. Π

Example 3.2. For $G = F_4$, c = 2, |Z(G)| = 25. By the previous remark, $P_r(G) \leq \frac{1}{2} - \frac{1}{50} = \frac{12}{25}$. Using Theorem 3.2, $P_r(G) = \frac{1}{5} + \frac{4}{125} = \frac{29}{125} \approx \frac{6}{25}$.

Remark 3.4. Let $G = F_i$, $8 \le i \le 10$. Then $P_r(G) \le \frac{2}{3} - \frac{1}{3p^3}$, p is prime.

Proof. These groups are nilpotent of nilpotency class c = 3, |Z(G)| = p [6]. Then $r = \frac{|G| - |Z(G)|}{c} = \frac{p^4 - p}{3}$ and $u = |G| - r = p^4 - \frac{p^4 - p}{3}$. Hence, by Corollary 3.1, $P_r(G) \le \frac{u}{|G|}$. So $P_r(G) \le (p^4 - \frac{p^4 - p}{3})/p^4 = 1 - \frac{p^4 - p}{3p^4} = \frac{2p^4 - p}{3p^4} = \frac{2}{3} - \frac{1}{3p^3}$.

Theorem 3.4. Let G be a nilpotent group with $G = H_{p_1} \times H_{p_2} \times ... \times H_{p_r}$, p-groups with nilpotency class 2, and the commutator subgroups H'_{p_i} of H_{p_i} are cyclic p-groups C_{p_i} , p_i are primes, i = 1, ..., r. Then

$$P_r(G) = \prod_{i=1}^r \frac{1}{p_i} \left(1 + \frac{1}{p_i^{2n_i}} \right).$$

Proof. As noted in [11], we use the general formula $P_r(H \times K) = P_r(H) \times P_r(H)$ $P_r(M)$, where H and M are two finite groups of coprime order. The only subgroup of C_{p_i} for i = 1, ..., r is $\{1\}$ and $C_{p_i/\{1\}}$ is cyclic. Using Theorem 2.1 and Proposition 2.1, one obtains

$$P_{r}(G) = \prod \frac{1}{|H'_{p_{i}}|} (1 + \sum_{H'_{p_{i}}/K} \frac{(p-1) \cdot [H'_{p_{i}} : K]/p}{p^{n_{i}(K)}}) = P_{r}(G) = \frac{1}{|H_{p_{1}}|} \cdot (1 + \frac{1}{p_{1}^{2n_{1}}}) \cdot \frac{1}{|H_{p_{2}}|} \cdot (1 + \frac{1}{p_{2}^{2n_{2}}}) \dots \frac{1}{|H_{p_{r}}|} \cdot (1 + \frac{1}{p_{r}^{2n_{r}}}),$$
for some n_{i} where $H_{p_{i}/Z(H_{p_{i}})} \cong C_{p_{i}}^{2n_{i}}$ for some n_{i} , $[H_{p_{i}} : Z(H_{p_{i}})]$ is a square, and is at least $|H'_{p_{i}}|^{2}$ and $p^{n_{i}(K)} \ge [H'_{p_{i}} : K]$ where $H'_{p_{i}/K}$ is cyclic.

On the commutativity probability in certain finite groups

Corollary 3.2. The above theorems can be applied to the simple Janko groups J_1, J_2 and the Mathieu group M_{12} of order $|J_1| = 2^3.3.5.7.11.19$, $|J_2| = 2^7.3^3.5^2.7$ and $|M_{12}| = 2^4.3^2.5.11$ and their centers are of order 1 and their subgroups $J'_1 = J_1, J'_2 = J_2$ and $M'_{12} = M_{12}$. The computations are easy and so are omitted.

Acknowledgment

The author is grateful to the Public Authority for Applied Education and Training for supporting this project No BE-22-09, and to Professor Mashhour Bani-Ata for his helpful discussion.

References

- Sadoon. Abdullah, Bilal Al-Hasanat, The conjugacy classes of symmetric groups, International Journal of Applied Mathematics, 25, no. 5, (2012), 603–607.
- [2] Vineezo Acciaro, The probability of generating some common families of finite groups, Utilitas Mathematica, 49,(1996), 243–253.
- [3] Bilal Al-Hasanat, Awni Al-Dababseh, Ebtisam Al-Sarairah, S. Alobiady, M. Alhasanat, An upper bound to the number of conjugacy classes of nonabelian nilpotent groups, Journal of Mathematics and Statistics, 13, no. 2, (2017), 139–142.
- [4] Bilal Al-Hasanat, Jihad M. Alhasanat, Enas M. Salah, On non-abelian groups of order $2^n, n \ge 4$ using Gap, International Journal of Applied Mathematics, **31**, no. 1, (2018), 41–51.
- [5] Bilal Al-Hasanat, Some probabilistic approaches on finite groups, International Journal of Applied Mathematics, **35**, no. 6, (2022), 827–838.
- [6] Bilal Al-Hasanat, On classification of groups of order p^4 , p odd prime, International journal of Mathematics and computer science, **17**, no. 4, (2022), 1569–1593.
- [7] Edward Bertram, A density theorem on the number of conjugacy classes in finite groups, Pacific J. Math., 55, (1974), 329–333.

- [8] Anna Castelaz, Commutativity degree of finite groups, PhD. Dissertation, Winston-Salem, North Carolina, (2010).
- [9] Paul Erdös, Pal. Turán, On some problems of a statistical group theory, IV, Acta Math. Acad. Sel. Hung., 19, (1968), 413–435.
- [10] Marshall Hall Jr., The theory of groups, AMS Chelsea publishing, American Mathematical Society, Providence, Rhode Island, 1968.
- [11] William Gustafson. What is the probability that two group elements commute, Amer. Math. Monthly, 80, (1973), 1031–1034.
- [12] Patric Gallagher, The number of conjugacy classes in a finite group, Math. Z., 118, (1970), 175–179.
- [13] Bertram Huppert, Endliche Gruppe I. Springer Verlag, Berlin, 1967.
- [14] Mark Newman, A bound for the number of conjugacy classes in a group, J. London Math. Soc., 43, (1960), 108–110,
- [15] David Rusin, What is the probability that two elements of a finite group commute?, Pacific Journal of Mathematics, 82, no. 1, (1979), 237–247.
- [16] Gary Sherman, A lower bound for the number of conjugacy classes in a finite nilpotent group, Notices Amer. Math. Soc., 25, (1978), A68.