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Abstract

The purpose of this paper is to compute the probability Pr(G)
that two elements of the group G, drawn at random with replacement,
commute; that is,

Pr(G) =
Number of ordered pairs (x, y) ∈ G×G such that xy = yx

|G×G| = |G|2

In particular, we compute Pr(G) for some groups such as the extraspe-
cial groups of order p3, p prime, for the permutation groups G = Sn

and G = An, n ≥ 5, for 10 non-abelian groups of order p4 and for
simple groups of certain type.

1 Introduction.

In this paper, all groups are finite. This notion of probability has been
investigated by Gustafson in [11] , where he studied the probability that two
group elements commute. In [15], Rusin has considered the probability that
two elements of a finite group commute. In particular, he explicitly computed
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Pr(G) for groupsG withG′ ≤ Z(G) orG′∩Z(G) = {1} where 1 is the identity
element of G, and classified the groups for which this probability is greater
than 11

32
. In [12], Gallagher has investigated the number of conjugacy classes

in a finite group G. For more information about this concept one may refer
to [7], [9], [13], [14], [16] and [15] .

2 Notations and preliminaries.

Our notations are fairly standard. If G is a group, then Z(G) denotes the
center of G and G′ is the commutator subgroup of G or the derived group of
G. The number of the conjugacy classes of a finite group of G is denoted by
∣

∣GC
∣

∣. The semidirect product of groups G and H is denoted by G⋊H .

Definition 2.1. ([10], [13]) Let G be a finite p-group for which G/Z(G) is
elementary abelian and Z(G) has order p. Then G is called an extraspecial
group.

Example 2.1. The group P 3, the dihedral group D8, and the quaternion
group Q8 are extraspecial groups.

Definition 2.2. ([10], [13]) Let G be a finite group. Then G is called nilpo-
tent with nilpotency class 2 if and only if [G,G,G] := [[G,G], G] = {1} or
equivalently G′ 6 Z(G).

Theorem 2.1. [15] If G is a p-group with G′ 6 Z(G), then

Pr(G) =
1

|G′|









1 +
∑

G′/K
cyclic

(p− 1) · [G′ : K] /p

pn(K)









,

where pn(K) = [G/K : Z(G/K)] > [G′ : K]2 .

Proposition 2.1. [15] If H is a p-group with H ′ 6 Z(H) and H ′ cyclic,
then H/Z(H) ∼=

∏

i (Cpni × Cpni ) with all ni ≤ k, n1 = k, where pk = |H ′| .
In particular, [H : Z(H)] is square and is at least |H ′|2.

Remark 2.1. The number of the conjugacy classes of a finite group G is a
significant quantity. It is used to measure the probability that two elements
commute:
”Let G be a finite group. Then the commutativity degree of G is Pr(G) =
k/|G|, where k = |GC |”.
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Theorem 2.2. [1] For the symmetric group Sn of cycle length L = {0, 2, 3, . . . , n},
the number of conjugacy classes uniquely determined by a cycle of length
k ∈ L is Mk, where Mk is the number of solutions of ki ∈ L for the inequal-
ity k +

∑

k≥ki∈L
ki ≤ n. Therefore,

∣

∣GC
∣

∣ =
∑

k∈LMk.

3 Results

In this section, we will show our main results corresponding to Pr(G) for
some selective groups G.

Theorem 3.1. Let G be an extraspecial group of order p3, p prime. Then

Pr(G) =
p2 + p− 1

p3

Proof. As |G| = p3, Z(G) > 1. This implies that |G/Z(G)| ≤ p2. Hence
G/Z(G) is abelian which means (G/Z(G))′ = {1}= G′Z(G)/Z(G). It follows
that G′ 6 Z(G); i.e., G is of nilpotency class 2 . As Z (G) has order p,
|G′| = Zp. The only proper subgroup of G′ is K = {1}, which has index p in
G′ . Applying Theorem 2.1, we get

Pr(G) =
1

|G′|









1 +
∑

G′/K
cylic

(p− 1) [G′ : K] /p

pn(K)









,

where using Proposition 2.1

pn(K) = [G/K : Z(G/K)] >
[

G′ : K]2 .

Consequently, Pr(G) = 1
p

(

1 + (p−1)
p2

)

, where G/Z(G) ∼= Z
2
p = Zp × Zp.

Proposition 3.1. For any finite group G, Pr(G) ≤ 1
4
+ 3

4
1

|G′|
, where G′ is

the commutator subgroup of G. If G = Sn, n > 5, then Pr(G) 6 1
16

+ 15
16

· 1
2n!

and if G = An, n > 5, then Pr(G) 6 1
9
+ 8

9
· 1
2n!

.

Proof. Using character theory ([13], Chapter 5), the degree equation of a
finite group G is |G| =

∑k
i=1 r

2
i , where k is the number of conjugacy classes
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of G, and the ri are positive integers. More precisely, [G : G′] of these are
equal to 1 . So

|G| = s+

k
∑

s+1

r2i

where
[G : G′] = s > s + 4(k − s) = 4k − 3s.

It follows that k 6
1
4
(|G|+ 3s) and Pr(G) = k

|G|
≤ 1

4
+ 3

4
· 1
|G′|

.

If G = Sn, then |G| > 120 for n > 5 and k > 7 and if G = An, then
|G| > 60 for n > 5 and k > 5. Again from the degree equation of G it follows
that |G| > [G : G′] + 64 (k − [G : G′]) if G = Sn, n > 5 = 16k − 15 [G : G′].
This implies that k 6

1
16
(|G|+ 15 [G : G′]) and so Pr(G) 6

1
16

+ 15
16

· 2
n!
,

where S ′
n = An. Arguing in a similar manner for G = An, one obtains

Pr(G) 6 1
9
+ 8

9
· 1
2n!

, as A′
n = An for n > 5

Example 3.1. Let G = S12. By the above proposition,
Pr(S12) ≤

1
16

+ 15
16
. 2
12!

≈ 1
16

+ 2
12!

.

Remark 3.1. In [1], the following result has been proved for Pr(Sn).
Let G = Sn be the symmetric group of cycle lengths L = {0, 2, 3, ..., n}, and

let Mk be the number of solutions of ki ∈ L for the inequality k+
∑

k≥ki∈L

ki ≤ n.

Then |GC | =
∑

k∈L

Mk and Pr(G) =

∑

k∈L

Mk

|G|
.

For G = S12, the number of solutions has been given for the above in-
equality using the GAP program [5] for computation where Pr(S12) was
computed as 77

12!
. This is worth comparing with the result obtained in the

above example.
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Remark 3.2. [6] There are 10 non-abelian groups of order p4; namely,

1. F1 =
〈

a, b|ap
2

= bp = [a, [a, b]] = [b, [a, b]] = [a, b]p = e
〉

∼= (Zp2 ×Zp)⋊

Zp.

2. F2 =
〈

a, b|ap
2

= bp
2

= e, [b, a] = bp
〉

∼= Zp2 ⋊ Zp2 .

3. F3 =
〈

a, b|ap
3

= bp = e, [b, a] = ap
2

〉

∼= Zp3 ⋊ Zp. .

4. F4 = 〈a, b, c|ap = bp = cp = dp = [a, c] = [b, c] = [a, d] = [b, d] = [c, d] = e〉 ∼=
Zp × ((Zp × Zp)⋊ Zp), where d = [a, b].

5. F5 =
〈

a, b, c|ap
2

= bp = cp = [a, c] = [b, c] = e, [b, a] = ap
〉

∼= Zp×(Zp2⋊

Zp).

6. F6 =
〈

a, b, c|ap
2

= bp = cp = [a, b] = [a, c] = e, [c, b] = ap
〉

∼= (Zp2×Zp)⋊

Zp.

7. F7 = 〈a, b|ap = bp = cp = [a, c]p = [b, c] = e, [a, [a, c]] = [b, [a, c]] = e〉 ∼=
(Zp × Zp × Zp)⋊ Zp. where c = [a, b].

8. F8 =
〈

a, b|ap
2

= bp = [a, b]p = [b, [a, b]] = e, [a, [a, b]] = ap
〉

∼= (Zp⋊Zp)⋊

Zp.

9. F9 =
〈

a, b|ap
2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = ap
〉

∼= (Zp2 ×

Zp)⋊ Zp.

10. F10 =
〈

a, b|ap
2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = a2p
〉

∼= (Zp2 ×

Zp)⋊ Zp.

Theorem 3.2. Let G = Fi, 1 ≤ i ≤ 6. Then Pr(G) = 1
p
(1+ (p−1)

p2
) = p2+ p −1

p3

.

Proof. As |G′| = p, p prime, and G is nilpotent of nilpotency class 2 [13], the
only proper subgroup of G′ is {1} which has index p. Applying Theorem 2.1

Pr(G) = 1
p
(1+

∑

G′/K

(p− 1)[G′ : K]/p

pn(K)
), pn(K) ≥ |[G′ : K]|2 = p2 andG/Z(G) ∼=

Zp2n y Proposition 2.1. In our case, n = 2.
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Theorem 3.3. [3] If G is a finite group of nilpotency class c, Then the
number of the conjugacy classes of G is |GC | ≤ u, where u = |G| − r and

r = |G|−|Z(G)|
c

.

Corollary 3.1. Let G be as in the above theorem. Then Pr(G) ≤ u
|G|

.

The next remarks can be obtained by Corollary 3.1 to find an upper
bound of Pr(G) for all the groups Fi, i = 1, 2, ..., 10.

Remark 3.3. Let G = Fi, 1 ≤ i ≤ 6. Then Pr(G) ≤ 1
2
− 1

2p2
.

Proof. These groups are nilpotent of nilpotency class c = 2, |Z(G)| = p2 [6].

Then r = p4−p2

2
= u. Hence Pr(G) ≤ (p

4−p2

2
)/p4 = 1

2
− 1

2p2
.

Example 3.2. For G = F4, c = 2, |Z(G)| = 25. By the previous remark,
Pr(G) ≤ 1

2
− 1

50
= 12

25
. Using Theorem 3.2, Pr(G) = 1

5
+ 4

125
= 29

125
≈

6
25
.

Remark 3.4. Let G = Fi, 8 ≤ i ≤ 10. Then Pr(G) ≤ 2
3
− 1

3p3
, p is prime.

Proof. These groups are nilpotent of nilpotency class c = 3, |Z(G)| = p [6].

Then r = |G|−|Z(G)|
c

= p4−p
3

and u = |G| − r = p4 − p4−p
3

. Hence, by Corollary

3.1, Pr(G) ≤ u
|G|

. So Pr(G) ≤ (p4− p4−p
3

)/p4 = 1− p4−p
3p4

= 2p4−p
3p4

= 2
3
− 1

3p3
.

Theorem 3.4. Let G be a nilpotent group with G = Hp1 ×Hp2 × ...×Hpr ,
p-groups with nilpotency class 2, and the commutator subgroups H ′

pi
of Hpi

are cyclic p-groups Cpi, pi are primes, i = 1, ..., r. Then

Pr(G) =

r
∏

i=1

1

pi

(

1 +
1

p2ni

i

)

.

Proof. As noted in [11], we use the general formula Pr(H ×K) = Pr(H) ×
Pr(M), where H and M are two finite groups of coprime order. The only
subgroup of Cpi for i = 1, ..., r is {1} and Cpi/{1} is cyclic. Using Theorem
2.1 and Proposition 2.1, one obtains

Pr(G) =
∏ 1

|H ′
pi
|
(1 +

∑

H′

pi
/K

(p− 1).[H ′
pi
: K]/p

pni(K)
) = Pr(G) =

1

|Hp1|
.(1 +

1

p2n1

1

).
1

|Hp2|
.(1 +

1

p2n2

2

)...
1

|Hpr |
.(1 +

1

p2nr
r

),

for some ni where Hpi/Z(Hpi
)
∼= C2ni

pi
for some ni, [Hpi : Z(Hpi)] is a square,

and is at least |H ′
pi
|2 and pni(K) ≥ [H ′

pi
: K] where H ′

pi/K
is cyclic.
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Corollary 3.2. The above theorems can be applied to the simple Janko groups
J1, J2 and the Mathieu group M12 of order |J1| = 23.3.5.7.11.19, |J2| =
27.33.52.7 and |M12| = 24.32.5.11 and their centers are of order 1 and their
subgroups J ′

1 = J1, J
′
2 = J2 and M ′

12 = M12. The computations are easy and
so are omitted.
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