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Abstract

If the small spheres of a Finslerian projective metric are quadrics,

then it is a Riemannian projective metric of constant curvature.

1 Introduction

A metric d on an open convex non-empty domain D ⊂ R
n is called projective,

if every segment in D is a geodesic of d, d(P,Q) + d(Q,R) = d(P,R) if and
only if Q ∈ PR, and d is continuous with respect to the Euclidean topology.
Minkowski and Hilbert metrics are the most known projective metrics [5],
but the set of the projective metrics is huge [12, 2, 1].

Busemann’s theorem [5, 25.4] says that a Minkowskian metric on the
plane is Euclidean if the circles are quadrics. In this article, we generalize
this statement.

Theorem 1.1. A Finslerian projective metric is a Riemannian projective

metric of constant curvature if and only if every small sphere is a quadric.
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2 Preliminaries

Points of Rn (n ∈ N) are denoted as A,B, . . . , vectors are
−→
AB or a,b, . . . ;

however, we use these latter notations also for points if the origin is fixed.
The open segment with endpoints A and B is denoted by AB. The open
ray starts from A passes through B is AB, and the line through A and B is
denoted by AB.

The affine ratio (A,B;C) of the collinear points A, B 6= A and C 6= B

satisfies (A,B;C)
−−→
BC =

−→
AC [5, page 243].

Let D ⊆ R
n be an open convex non-empty domain. Let’s identify every

tangent space TPD with R
n. If a projective metric dF is such that dF : D ×

D ∋ (P,Q) 7→
∫ 1

0
FM(P+t(Q−P ),

−→
PQ)dt ∈ R≥0 holds for a Finsler function

F : D × R
n → R, then dF is called a Finslerian projective metric. A point

P of D is called Riemannian if the Finsler norm FP : R
n ∋ v 7→ F (P,v) ∈

R is quadratic [11]. If every point of D is Riemannian, then dF is called
Riemannian projective metric.

If a projective metric d is given, then S̺
d;O = {P : d(O,P ) = ̺} is the

sphere of radius ̺ > 0 with center O.
We need the following statement from [4, (16.12), p. 91]: For n ≥ 3, if

k ∈ {2, . . . , n− 1}, then

the border ∂K of a convex body K ⊂ R
n is an ellip-

soid if and only if every k-plane through an inner

point of K intersects ∂K in a k-dimensional ellip-

soid.

(2.1)

3 Projective metrics of small spheres that are

quadrics

The following lemma is proved here for the sake of completeness.
Lemma 3.1 Every small sphere of a Riemannian projective metric of con-
stant curvature is a quadric.

Proof. Let D⊆{(x1, . . . , xn, 1) : (x1, . . . , xn) ∈ R
n} be an open convex

non-empty domain and let dF be a Riemannian projective metric of constant
curvature κ on D.

If dG is also a Riemannian projective metric of constant curvature κ on D,
then every point P ∈ D has a neighborhood U ∋ P inD such that there exists
an isometry ϕ : U → ϕ(U) ⊆ D which satisfies dF (Q,R) = dG(ϕ(Q), ϕ(R))
for every Q,R ∈ U [8, 2.2 Corollary]. Since every such isometric mapping is a
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restriction of a projectivity [10, (2.1)], and every projectivity maps quadrics
to quadrics, it is enough to show that the small spheres are quadrics for a
well-chosen Riemannian projective metric dG of curvature κ.

Without loss of generality, assume that P = (0, . . . , 0).
If κ = 0, let c = 0 and if κ 6= 0, let c|κ| = κ.

Equip the hypersurface Kn
c ⊂ R

n+1 of points p = (p1, . . . , pn, pn+1) to
satisfy c(p21 + · · ·+ p2n) + p2n+1 = 1 with the Riemannian metric

gc;p : TpK
n
c × TpK

n
c ∋ (x,y) 7→ x1y1 + · · ·+ xnyn + c xn+1yn+1

at every point p ∈ Kn
c . Then one gets the so-called projective model K̄n

c of the
space of constant curvature c [7]. The gnomonic projection of K̄n

c from the
origin (0, . . . , 0) into the hyperplane xn+1 = 1 gives a Riemannian projective
metric dc of constant curvature c [9].

Let dG be d0 if κ = 0, and let dG be dc/|κ| if κ 6= 0. Then dG has constant
curvature κ in D and the sphere S̺

dG;P is a Euclidean sphere in D. Thus, the
lemma follows.

Proof of Theorem 1.1. Lemma 3.1 proves the “only if ” part of the
statement. For the “if ” part, we first prove that every point is Riemannian;
i.e., that the unit sphere {v ∈ TPD : F (O,v) = 1} in the tangent space TOD
is a quadric for every point O ∈ D. According to (2.1), this needs to be done
only in dimension two. So from now on we assume D ⊆ R

2.
Given a Finslerian projective metric dF on a connected open bounded

domain D of R2 with the Finsler function F : D×R
2 → R, fix a point O and

a straight line l through O, and assume that every circle Sρ
dF ;O of small radius

ρ > 0 is a quadric. Then Sρ
dF ;O is an ellipse Eρ, because Sρ

dF ;O is bounded.

Let Cρ be the center of Eρ and let Oρ be the point symmetric to O in Cρ.
Let lρ be the straight line through Cρ that is parallel to l, and let Xρ be an
intersection point of lρ and Eρ.

For any straight line ℓ through O, let Aℓ
ρ and let Bℓ

ρ be the points, where

ℓ intersects Sρ
dF ;O. Define Aρ = A

OCρ
ρ and Bρ = B

OCρ
ρ so that O ∈ CρBρ. See

Figure 1.

Aℓ
ρ

Bℓ
ρ

ℓ
Xρ

lρ

Cρ

S
ρ
dF ;O

=Eρ

Aρ BρOρ O

Figure 1: Sρ
dF ;O is an ellipse Eρ
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Let ερ = 1− (O,Cρ;Bρ), aρ = ρ/(1− ε2ρ), and cρ = aρερ.
Let dρ be the Euclidean metric satisfying dρ(Cρ, Bρ)=aρ (hence dρ(Cρ, O) =

cρ), and d2ρ(Cρ, Xρ)=a2ρ−c2ρ. Then we get Eρ = {E ∈ R
2 : 2aρ = dρ(O,E) +

dρ(E,Oρ)}.
So, for any straight line ℓ through O, we have

dF (A
ℓ
ρ, O)

dρ(Aℓ
ρ, O)

+
dF (B

ℓ
ρ, O)

dρ(Bℓ
ρ, O)

=
ρ

dρ(Aℓ
ρ, O)

+
ρ

dρ(Bℓ
ρ, O)

= ρ
( 1

aρ − cρ
+

1

aρ + cρ

)

=
2aρρ

a2ρ − c2ρ
=

2ρ/aρ
1− ε2ρ

= 2,

(3.1)

where the second equation follows from the polar form of the ellipse Eρ relative
to focus O.

Fix a ̺ > 0. By the Busemann–Mayer theorem [6, Theorem 4.3] we have

lim
ρ→0

dF (A
ℓ
ρ, O)

dρ(Aℓ
ρ, O)

= lim
ρ→0

(dF (A
ℓ
ρ, O)

d̺(Aℓ
ρ, O)

d̺(A
ℓ
ρ, O)

dρ(Aℓ
ρ, O)

)

=F
(

O, lim
ρ→0

Aℓ
ρ −O

d̺(Aℓ
ρ, O)

)

lim
ρ→0

d̺(A
ℓ
ρ, O)

dρ(Aℓ
ρ, O)

=F
(

O, lim
ρ→0

Aℓ
ρ − O

dρ(Aℓ
ρ, O)

)

,

and in a similar way we also have

lim
ρ→0

dF (B
ℓ
ρ, O)

dρ(Bℓ
ρ, O)

=F
(

O, lim
ρ→0

O − Bℓ
ρ

dρ(Bℓ
ρ, O)

)

.

Since
Aℓ

ρ−O

dρ(Aℓ
ρ,O)

=
O−Bℓ

ρ

dρ(Bℓ
ρ,O)

, equation (3.1) gives

1 = F
(

O, lim
ρ→0

Aℓ
ρ −O

dρ(Aℓ
ρ, O)

)

.

Thus, the unit circle of the Finsler norm FO(·) = F (O, ·) is the limit of the
unit circles of dρ. This means that the closed quadrics S1

dρ;O
converge to the

strictly convex closed curve, the unit circle of FO. Hence the unit circle of
FO is a quadric; i.e., an ellipse.

Thus, dF is a Riemannian projective metric-space.
By Beltrami’s theorem [3] (see also [5, (29.3)]), every Riemannian projec-

tive metric has constant curvature, so the proof is complete.
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Theorem 1.1 can be sharpened for special projective metrics. It is well-
known that a Minkowski geometry is a model of the Euclidean geometry if
and only if it has one Riemannian point [5, 24.10 with 25.4], and it turned
out recently [11] that a Hilbert geometry with twice differentiable boundary
in the plane is a Cayley–Klein model of the hyperbolic geometry if and only
if it has two Riemannian points.
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