Finslerian Projective Metrics with Small Quadratic Spheres

Ahmed Mohsin Mahdi
Department of Mathematics
Faculty of Computer Science and Information Technology
Al-Qadisiyah University
Al-Qadisiyah, Iraq
email: ahmed.m.mahdi@qu.edu.iq

(Received October 20, 2023, Accepted January 26, 2024, Published February 12, 2024)

Abstract

If the small spheres of a Finslerian projective metric are quadrics, then it is a Riemannian projective metric of constant curvature.

1 Introduction

A metric d on an open convex non-empty domain $\mathcal{D} \subset \mathbb{R}^{n}$ is called projective, if every segment in \mathcal{D} is a geodesic of $d, d(P, Q)+d(Q, R)=d(P, R)$ if and only if $Q \in \overline{P R}$, and d is continuous with respect to the Euclidean topology. Minkowski and Hilbert metrics are the most known projective metrics [5], but the set of the projective metrics is huge $[12,2,1]$.

Busemann's theorem [5, 25.4] says that a Minkowskian metric on the plane is Euclidean if the circles are quadrics. In this article, we generalize this statement.

Theorem 1.1. A Finslerian projective metric is a Riemannian projective metric of constant curvature if and only if every small sphere is a quadric.

Key words and phrases: Projective metric, Finslerian metric, Riemannian metric, spheres.
AMS (MOS) Subject Classifications: 53C23, 53C70, 51M09, 51M10.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2 Preliminaries

Points of $\mathbb{R}^{n}(n \in \mathbb{N})$ are denoted as A, B, \ldots, vectors are $\overrightarrow{A B}$ or $\mathbf{a}, \mathbf{b}, \ldots$; however, we use these latter notations also for points if the origin is fixed. The open segment with endpoints A and B is denoted by $\overline{A B}$. The open ray starts from A passes through B is $\bar{A} B$, and the line through A and B is denoted by $A B$.

The affine ratio $(A, B ; C)$ of the collinear points $A, B \neq A$ and $C \neq B$ satisfies $(A, B ; C) \overrightarrow{B C}=\overrightarrow{A C}$ [5, page 243].

Let $\mathcal{D} \subseteq \mathbb{R}^{n}$ be an open convex non-empty domain. Let's identify every tangent space $T_{P} \mathcal{D}$ with \mathbb{R}^{n}. If a projective metric d_{F} is such that $d_{F}: \mathcal{D} \times$ $\mathcal{D} \ni(P, Q) \mapsto \int_{0}^{1} F_{\mathcal{M}}(P+t(Q-P), \overrightarrow{P Q}) d t \in \mathbb{R}_{\geq 0}$ holds for a Finsler function $F: \mathcal{D} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, then d_{F} is called a Finslerian projective metric. A point P of \mathcal{D} is called Riemannian if the Finsler norm $F_{P}: \mathbb{R}^{n} \ni \mathbf{v} \mapsto F(P, \mathbf{v}) \in$ \mathbb{R} is quadratic [11]. If every point of \mathcal{D} is Riemannian, then d_{F} is called Riemannian projective metric.

If a projective metric d is given, then $\mathcal{S}_{d ; O}^{\varrho}=\{P: d(O, P)=\varrho\}$ is the sphere of radius $\varrho>0$ with center O.

We need the following statement from [4, (16.12), p. 91]: For $n \geq 3$, if $k \in\{2, \ldots, n-1\}$, then
the border $\partial \mathcal{K}$ of a convex body $\mathcal{K} \subset \mathbb{R}^{n}$ is an ellipsoid if and only if every k-plane through an inner point of \mathcal{K} intersects $\partial \mathcal{K}$ in a k-dimensional ellipsoid.

3 Projective metrics of small spheres that are quadrics

The following lemma is proved here for the sake of completeness.
Lemma 3.1 Every small sphere of a Riemannian projective metric of constant curvature is a quadric.

Proof. Let $\mathcal{D} \subseteq\left\{\left(x_{1}, \ldots, x_{n}, 1\right):\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right\}$ be an open convex non-empty domain and let d_{F} be a Riemannian projective metric of constant curvature κ on \mathcal{D}.

If d_{G} is also a Riemannian projective metric of constant curvature κ on \mathcal{D}, then every point $P \in \mathcal{D}$ has a neighborhood $\mathcal{U} \ni P$ in \mathcal{D} such that there exists an isometry $\varphi: \mathcal{U} \rightarrow \varphi(\mathcal{U}) \subseteq \mathcal{D}$ which satisfies $d_{F}(Q, R)=d_{G}(\varphi(Q), \varphi(R))$ for every $Q, R \in \mathcal{U}$ [8, 2.2 Corollary]. Since every such isometric mapping is a
restriction of a projectivity $[10,(2.1)]$, and every projectivity maps quadrics to quadrics, it is enough to show that the small spheres are quadrics for a well-chosen Riemannian projective metric d_{G} of curvature κ.

Without loss of generality, assume that $P=(0, \ldots, 0)$.
If $\kappa=0$, let $c=0$ and if $\kappa \neq 0$, let $c|\kappa|=\kappa$.
Equip the hypersurface $\mathcal{K}_{c}^{n} \subset \mathbb{R}^{n+1}$ of points $\mathbf{p}=\left(p_{1}, \ldots, p_{n}, p_{n+1}\right)$ to satisfy $c\left(p_{1}^{2}+\cdots+p_{n}^{2}\right)+p_{n+1}^{2}=1$ with the Riemannian metric

$$
g_{c ; \mathbf{p}}: T_{\mathbf{p}} \mathcal{K}_{c}^{n} \times T_{\mathbf{p}} \mathcal{K}_{c}^{n} \ni(\mathbf{x}, \mathbf{y}) \mapsto x_{1} y_{1}+\cdots+x_{n} y_{n}+c x_{n+1} y_{n+1}
$$

at every point $\mathbf{p} \in \mathcal{K}_{c}^{n}$. Then one gets the so-called projective model $\overline{\mathcal{K}}_{c}^{n}$ of the space of constant curvature $c[7]$. The gnomonic projection of $\overline{\mathcal{K}}_{c}^{n}$ from the origin $(0, \ldots, 0)$ into the hyperplane $x_{n+1}=1$ gives a Riemannian projective metric d_{c} of constant curvature $c[9]$.

Let d_{G} be d_{0} if $\kappa=0$, and let d_{G} be $d_{c} /|\kappa|$ if $\kappa \neq 0$. Then d_{G} has constant curvature κ in \mathcal{D} and the sphere $\mathcal{S}_{d_{G} ; P}^{\varrho}$ is a Euclidean sphere in \mathcal{D}. Thus, the lemma follows.

Proof of Theorem 1.1. Lemma 3.1 proves the "only if" part of the statement. For the "if" part, we first prove that every point is Riemannian; i.e., that the unit sphere $\left\{\mathbf{v} \in T_{P} \mathcal{D}: F(O, \mathbf{v})=1\right\}$ in the tangent space $T_{O} \mathcal{D}$ is a quadric for every point $O \in \mathcal{D}$. According to (2.1), this needs to be done only in dimension two. So from now on we assume $\mathcal{D} \subseteq \mathbb{R}^{2}$.

Given a Finslerian projective metric d_{F} on a connected open bounded domain \mathcal{D} of \mathbb{R}^{2} with the Finsler function $F: \mathcal{D} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$, fix a point O and a straight line l through O, and assume that every circle $\mathcal{S}_{d_{F} ; O}^{\rho}$ of small radius $\rho>0$ is a quadric. Then $\mathcal{S}_{d_{F} ; O}^{\rho}$ is an ellipse \mathcal{E}_{ρ}, because $\mathcal{S}_{d_{F} ; O}^{\rho}$ is bounded.

Let C_{ρ} be the center of \mathcal{E}_{ρ} and let O_{ρ} be the point symmetric to O in C_{ρ}. Let l_{ρ} be the straight line through C_{ρ} that is parallel to l, and let X_{ρ} be an intersection point of l_{ρ} and \mathcal{E}_{ρ}.

For any straight line ℓ through O, let A_{ρ}^{ℓ} and let B_{ρ}^{ℓ} be the points, where ℓ intersects $\mathcal{S}_{d_{F} ; O}^{\rho}$. Define $A_{\rho}=A_{\rho}^{O C_{\rho}}$ and $B_{\rho}=B_{\rho}^{O C_{\rho}}$ so that $O \in \overline{C_{\rho} B_{\rho}}$. See Figure 1.

Figure 1: $\mathcal{S}_{d_{F} ; O}^{\rho}$ is an ellipse \mathcal{E}_{ρ}

Let $\varepsilon_{\rho}=1-\left(O, C_{\rho} ; B_{\rho}\right), a_{\rho}=\rho /\left(1-\varepsilon_{\rho}^{2}\right)$, and $c_{\rho}=a_{\rho} \varepsilon_{\rho}$.
Let d_{ρ} be the Euclidean metric satisfying $d_{\rho}\left(C_{\rho}, B_{\rho}\right)=a_{\rho}$ (hence $d_{\rho}\left(C_{\rho}, O\right)=$ $\left.c_{\rho}\right)$, and $d_{\rho}^{2}\left(C_{\rho}, X_{\rho}\right)=a_{\rho}^{2}-c_{\rho}^{2}$. Then we get $\mathcal{E}_{\rho}=\left\{E \in \mathbb{R}^{2}: 2 a_{\rho}=d_{\rho}(O, E)+\right.$ $\left.d_{\rho}\left(E, O_{\rho}\right)\right\}$.

So, for any straight line ℓ through O, we have

$$
\begin{align*}
\frac{d_{F}\left(A_{\rho}^{\ell}, O\right)}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)}+\frac{d_{F}\left(B_{\rho}^{\ell}, O\right)}{d_{\rho}\left(B_{\rho}^{\ell}, O\right)} & =\frac{\rho}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)}+\frac{\rho}{d_{\rho}\left(B_{\rho}^{\ell}, O\right)} \\
& =\rho\left(\frac{1}{a_{\rho}-c_{\rho}}+\frac{1}{a_{\rho}+c_{\rho}}\right)=\frac{2 a_{\rho} \rho}{a_{\rho}^{2}-c_{\rho}^{2}}=\frac{2 \rho / a_{\rho}}{1-\varepsilon_{\rho}^{2}}=2 \tag{3.1}
\end{align*}
$$

where the second equation follows from the polar form of the ellipse \mathcal{E}_{ρ} relative to focus O.

Fix a $\varrho>0$. By the Busemann-Mayer theorem [6, Theorem 4.3] we have

$$
\begin{aligned}
\lim _{\rho \rightarrow 0} \frac{d_{F}\left(A_{\rho}^{\ell}, O\right)}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)} & =\lim _{\rho \rightarrow 0}\left(\frac{d_{F}\left(A_{\rho}^{\ell}, O\right)}{d_{\varrho}\left(A_{\rho}^{\ell}, O\right)} \frac{d_{\varrho}\left(A_{\rho}^{\ell}, O\right)}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)}\right) \\
& =F\left(O, \lim _{\rho \rightarrow 0} \frac{A_{\rho}^{\ell}-O}{d_{\varrho}\left(A_{\rho}^{\ell}, O\right)}\right) \lim _{\rho \rightarrow 0} \frac{d_{\varrho}\left(A_{\rho}^{\ell}, O\right)}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)}=F\left(O, \lim _{\rho \rightarrow 0} \frac{A_{\rho}^{\ell}-O}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)}\right)
\end{aligned}
$$

and in a similar way we also have

$$
\lim _{\rho \rightarrow 0} \frac{d_{F}\left(B_{\rho}^{\ell}, O\right)}{d_{\rho}\left(B_{\rho}^{\ell}, O\right)}=F\left(O, \lim _{\rho \rightarrow 0} \frac{O-B_{\rho}^{\ell}}{d_{\rho}\left(B_{\rho}^{\ell}, O\right)}\right) .
$$

Since $\frac{A_{\rho}^{\ell}-O}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)}=\frac{O-B_{\rho}^{\ell}}{d_{\rho}\left(B_{\rho}^{\ell}, O\right)}$, equation (3.1) gives

$$
1=F\left(O, \lim _{\rho \rightarrow 0} \frac{A_{\rho}^{\ell}-O}{d_{\rho}\left(A_{\rho}^{\ell}, O\right)}\right) .
$$

Thus, the unit circle of the Finsler norm $F_{O}(\cdot)=F(O, \cdot)$ is the limit of the unit circles of d_{ρ}. This means that the closed quadrics $\mathcal{S}_{d_{\rho} ; O}^{1}$ converge to the strictly convex closed curve, the unit circle of F_{O}. Hence the unit circle of F_{O} is a quadric; i.e., an ellipse.

Thus, d_{F} is a Riemannian projective metric-space.
By Beltrami's theorem [3] (see also [5, (29.3)]), every Riemannian projective metric has constant curvature, so the proof is complete.

Theorem 1.1 can be sharpened for special projective metrics. It is wellknown that a Minkowski geometry is a model of the Euclidean geometry if and only if it has one Riemannian point [5, 24.10 with 25.4], and it turned out recently [11] that a Hilbert geometry with twice differentiable boundary in the plane is a Cayley-Klein model of the hyperbolic geometry if and only if it has two Riemannian points.

Acknowledgment. The author appreciates Árpád Kurusa's assistance in preparing and discussing all parts of this article.

References

[1] Ralph Alexander, Planes for which the lines are the shortest paths between points, Illinois Journal of Mathematics, 22, no. 2, (1978), 177190.
[2] Rouben V. Ambartzumian, A note on pseudo-metrics on the plane, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 37, no. 2, (1976), 145-155.
[3] Eugenio Beltrami, Risoluzione del problema riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette, 1865.
[4] Herbert Busemann, The geometry of geodesics, Academic Press Inc., New York, 1955.
[5] Herbert Busemann, Paul J. Kelly, Projective Geometry and Projective Metrics, Academic Press Inc., New York, 1953.
[6] Herbert Busemann, Walther Mayer, On the foundations of calculus of variations, Transactions of the American Mathematical Society, 49, no. 2, (1941), 173-198.
[7] James W. Cannon, William J. Floyd, Richard Kenyon, Walter R. Parry, Hyperbolic geometry, Flavors of geometry, MSRI Publications, 31, (1997), 59-115.
[8] Manfredo P. do Carmo, Riemannian Geometry, 1992.
[9] Árpád Kurusa, Support theorems for totally geodesic Radon transforms on constant curvature spaces, Proceedings of the American Mathematical Society, 112, no. 2, (1994), 429-435.
[10] Árpád Kurusa, Straight projective-metric spaces with centres, Journal of Geometry, 109, no. 1, (2018), 22.
[11] Árpád Kurusa, Hilbert geometries with Riemannian points, Annali di Matematica Pura ed Applicata, 199, no. 2, (2020), 809-820.
[12] A. V. Pogorelov, A complete solution of Hilberts fourth problem, 14, (1973), 46-49.

