International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 791–796

(M CS)

Finslerian Projective Metrics with Small Quadratic Spheres

Ahmed Mohsin Mahdi

Department of Mathematics Faculty of Computer Science and Information Technology Al-Qadisiyah University Al-Qadisiyah, Iraq

email: ahmed.m.mahdi@qu.edu.iq

(Received October 20, 2023, Accepted January 26, 2024, Published February 12, 2024)

Abstract

If the small spheres of a Finslerian projective metric are quadrics, then it is a Riemannian projective metric of constant curvature.

1 Introduction

A metric d on an open convex non-empty domain $\mathcal{D} \subset \mathbb{R}^n$ is called *projective*, if every segment in \mathcal{D} is a geodesic of d, d(P,Q) + d(Q,R) = d(P,R) if and only if $Q \in \overline{PR}$, and d is continuous with respect to the Euclidean topology. Minkowski and Hilbert metrics are the most known projective metrics [5], but the set of the projective metrics is huge [12, 2, 1].

Busemann's theorem [5, 25.4] says that a Minkowskian metric on the plane is Euclidean if the circles are quadrics. In this article, we generalize this statement.

Theorem 1.1. A Finslerian projective metric is a Riemannian projective metric of constant curvature if and only if every small sphere is a quadric.

Key words and phrases: Projective metric, Finslerian metric, Riemannian metric, spheres.

AMS (MOS) Subject Classifications: 53C23, 53C70, 51M09, 51M10. ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

2 Preliminaries

Points of \mathbb{R}^n $(n \in \mathbb{N})$ are denoted as A, B, \ldots , vectors are \overrightarrow{AB} or $\mathbf{a}, \mathbf{b}, \ldots$; however, we use these latter notations also for points if the origin is fixed. The open segment with endpoints A and B is denoted by \overline{AB} . The open ray starts from A passes through B is \overline{AB} , and the line through A and B is denoted by AB.

The affine ratio (A, B; C) of the collinear points $A, B \neq A$ and $C \neq B$ satisfies $(A, B; C)\overrightarrow{BC} = \overrightarrow{AC}$ [5, page 243].

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be an open convex non-empty domain. Let's identify every tangent space $T_P\mathcal{D}$ with \mathbb{R}^n . If a projective metric d_F is such that $d_F: \mathcal{D} \times \mathcal{D} \ni (P,Q) \mapsto \int_0^1 F_{\mathcal{M}}(P+t(Q-P), \overrightarrow{PQ})dt \in \mathbb{R}_{\geq 0}$ holds for a *Finsler function* $F: \mathcal{D} \times \mathbb{R}^n \to \mathbb{R}$, then d_F is called a *Finslerian* projective metric. A point P of \mathcal{D} is called *Riemannian* if the Finsler norm $F_P: \mathbb{R}^n \ni \mathbf{v} \mapsto F(P, \mathbf{v}) \in \mathbb{R}$ is quadratic [11]. If every point of \mathcal{D} is Riemannian, then d_F is called *Riemannian* projective metric.

If a projective metric d is given, then $\mathcal{S}_{d;O}^{\varrho} = \{P : d(O, P) = \varrho\}$ is the sphere of radius $\varrho > 0$ with center O.

We need the following statement from [4, (16.12), p. 91]: For $n \ge 3$, if $k \in \{2, \ldots, n-1\}$, then

the border $\partial \mathcal{K}$ of a convex body $\mathcal{K} \subset \mathbb{R}^n$ is an ellipsoid if and only if every k-plane through an inner point of \mathcal{K} intersects $\partial \mathcal{K}$ in a k-dimensional ellipsoid. (2.1)

3 Projective metrics of small spheres that are quadrics

The following lemma is proved here for the sake of completeness.

Lemma 3.1 Every small sphere of a Riemannian projective metric of constant curvature is a quadric.

Proof. Let $\mathcal{D} \subseteq \{(x_1, \ldots, x_n, 1) : (x_1, \ldots, x_n) \in \mathbb{R}^n\}$ be an open convex non-empty domain and let d_F be a Riemannian projective metric of constant curvature κ on \mathcal{D} .

If d_G is also a Riemannian projective metric of constant curvature κ on \mathcal{D} , then every point $P \in \mathcal{D}$ has a neighborhood $\mathcal{U} \ni P$ in \mathcal{D} such that there exists an isometry $\varphi \colon \mathcal{U} \to \varphi(\mathcal{U}) \subseteq \mathcal{D}$ which satisfies $d_F(Q, R) = d_G(\varphi(Q), \varphi(R))$ for every $Q, R \in \mathcal{U}$ [8, 2.2 Corollary]. Since every such isometric mapping is a restriction of a projectivity [10, (2.1)], and every projectivity maps quadrics to quadrics, it is enough to show that the small spheres are quadrics for a well-chosen Riemannian projective metric d_G of curvature κ .

Without loss of generality, assume that P = (0, ..., 0).

If $\kappa = 0$, let c = 0 and if $\kappa \neq 0$, let $c|\kappa| = \kappa$.

Equip the hypersurface $\mathcal{K}_c^n \subset \mathbb{R}^{n+1}$ of points $\mathbf{p} = (p_1, \dots, p_n, p_{n+1})$ to satisfy $c(p_1^2 + \dots + p_n^2) + p_{n+1}^2 = 1$ with the Riemannian metric

$$g_{c;\mathbf{p}} \colon T_{\mathbf{p}} \mathcal{K}_{c}^{n} \times T_{\mathbf{p}} \mathcal{K}_{c}^{n} \ni (\mathbf{x}, \mathbf{y}) \mapsto x_{1} y_{1} + \dots + x_{n} y_{n} + c \, x_{n+1} y_{n+1}$$

at every point $\mathbf{p} \in \mathcal{K}_c^n$. Then one gets the so-called *projective model* $\bar{\mathcal{K}}_c^n$ of the space of constant curvature c [7]. The gnomonic projection of $\bar{\mathcal{K}}_c^n$ from the origin $(0, \ldots, 0)$ into the hyperplane $x_{n+1} = 1$ gives a Riemannian projective metric d_c of constant curvature c [9].

Let d_G be d_0 if $\kappa = 0$, and let d_G be $d_c/|\kappa|$ if $\kappa \neq 0$. Then d_G has constant curvature κ in \mathcal{D} and the sphere $\mathcal{S}^{\varrho}_{d_G;P}$ is a Euclidean sphere in \mathcal{D} . Thus, the lemma follows.

Proof of Theorem 1.1. Lemma 3.1 proves the "only if" part of the statement. For the "if" part, we first prove that every point is Riemannian; i.e., that the unit sphere $\{\mathbf{v} \in T_P \mathcal{D} : F(O, \mathbf{v}) = 1\}$ in the tangent space $T_O \mathcal{D}$ is a quadric for every point $O \in \mathcal{D}$. According to (2.1), this needs to be done only in dimension two. So from now on we assume $\mathcal{D} \subseteq \mathbb{R}^2$.

Given a Finslerian projective metric d_F on a connected open bounded domain \mathcal{D} of \mathbb{R}^2 with the Finsler function $F: \mathcal{D} \times \mathbb{R}^2 \to \mathbb{R}$, fix a point O and a straight line l through O, and assume that every circle $\mathcal{S}^{\rho}_{d_F;O}$ of small radius $\rho > 0$ is a quadric. Then $\mathcal{S}^{\rho}_{d_F;O}$ is an ellipse \mathcal{E}_{ρ} , because $\mathcal{S}^{\rho}_{d_F;O}$ is bounded.

Let C_{ρ} be the center of \mathcal{E}_{ρ} and let O_{ρ} be the point symmetric to O in C_{ρ} . Let l_{ρ} be the straight line through C_{ρ} that is parallel to l, and let X_{ρ} be an intersection point of l_{ρ} and \mathcal{E}_{ρ} .

For any straight line ℓ through O, let A_{ρ}^{ℓ} and let B_{ρ}^{ℓ} be the points, where ℓ intersects $S_{d_{F};O}^{\rho}$. Define $A_{\rho} = A_{\rho}^{OC_{\rho}}$ and $B_{\rho} = B_{\rho}^{OC_{\rho}}$ so that $O \in \overline{C_{\rho}B_{\rho}}$. See Figure 1.

Figure 1: $\mathcal{S}^{\rho}_{d_F;O}$ is an ellipse \mathcal{E}_{ρ}

Let $\varepsilon_{\rho} = 1 - (O, C_{\rho}; B_{\rho}), a_{\rho} = \rho/(1 - \varepsilon_{\rho}^2), \text{ and } c_{\rho} = a_{\rho}\varepsilon_{\rho}.$ Let d_{ρ} be the Euclidean metric satisfying $d_{\rho}(C_{\rho}, B_{\rho}) = a_{\rho}$ (hence $d_{\rho}(C_{\rho}, O) = c_{\rho}$), and $d_{\rho}^2(C_{\rho}, X_{\rho}) = a_{\rho}^2 - c_{\rho}^2$. Then we get $\mathcal{E}_{\rho} = \{E \in \mathbb{R}^2 : 2a_{\rho} = d_{\rho}(O, E) + d_{\rho}(E, O_{\rho})\}.$

So, for any straight line ℓ through O, we have

$$\frac{d_F(A_{\rho}^{\ell}, O)}{d_{\rho}(A_{\rho}^{\ell}, O)} + \frac{d_F(B_{\rho}^{\ell}, O)}{d_{\rho}(B_{\rho}^{\ell}, O)} = \frac{\rho}{d_{\rho}(A_{\rho}^{\ell}, O)} + \frac{\rho}{d_{\rho}(B_{\rho}^{\ell}, O)} = \frac{\rho}{a_{\rho}^2 - c_{\rho}^2} = \frac{2\rho/a_{\rho}}{1 - \varepsilon_{\rho}^2} = 2,$$
(3.1)

where the second equation follows from the polar form of the ellipse \mathcal{E}_{ρ} relative to focus O.

Fix a $\rho > 0$. By the Busemann–Mayer theorem [6, Theorem 4.3] we have

$$\begin{split} \lim_{\rho \to 0} \frac{d_F(A_{\rho}^{\ell}, O)}{d_{\rho}(A_{\rho}^{\ell}, O)} &= \lim_{\rho \to 0} \left(\frac{d_F(A_{\rho}^{\ell}, O)}{d_{\varrho}(A_{\rho}^{\ell}, O)} \frac{d_{\varrho}(A_{\rho}^{\ell}, O)}{d_{\rho}(A_{\rho}^{\ell}, O)} \right) \\ &= F\left(O, \lim_{\rho \to 0} \frac{A_{\rho}^{\ell} - O}{d_{\varrho}(A_{\rho}^{\ell}, O)}\right) \lim_{\rho \to 0} \frac{d_{\varrho}(A_{\rho}^{\ell}, O)}{d_{\rho}(A_{\rho}^{\ell}, O)} = F\left(O, \lim_{\rho \to 0} \frac{A_{\rho}^{\ell} - O}{d_{\rho}(A_{\rho}^{\ell}, O)}\right), \end{split}$$

and in a similar way we also have

$$\lim_{\rho \to 0} \frac{d_F(B_\rho^\ell, O)}{d_\rho(B_\rho^\ell, O)} = F\left(O, \lim_{\rho \to 0} \frac{O - B_\rho^\ell}{d_\rho(B_\rho^\ell, O)}\right).$$

Since $\frac{A_{\rho}^{\ell}-O}{d_{\rho}(A_{\rho}^{\ell},O)} = \frac{O-B_{\rho}^{\ell}}{d_{\rho}(B_{\rho}^{\ell},O)}$, equation (3.1) gives

$$1 = F\left(O, \lim_{\rho \to 0} \frac{A_{\rho}^{\ell} - O}{d_{\rho}(A_{\rho}^{\ell}, O)}\right).$$

Thus, the unit circle of the Finsler norm $F_O(\cdot) = F(O, \cdot)$ is the limit of the unit circles of d_{ρ} . This means that the closed quadrics $S^1_{d_{\rho};O}$ converge to the strictly convex closed curve, the unit circle of F_O . Hence the unit circle of F_O is a quadric; i.e., an ellipse.

Thus, d_F is a Riemannian projective metric-space.

By Beltrami's theorem [3] (see also [5, (29.3)]), every Riemannian projective metric has constant curvature, so the proof is complete.

794

Theorem 1.1 can be sharpened for special projective metrics. It is wellknown that a Minkowski geometry is a model of the Euclidean geometry if and only if it has *one* Riemannian point [5, 24.10 with 25.4], and it turned out recently [11] that a Hilbert geometry with twice differentiable boundary in the plane is a Cayley–Klein model of the hyperbolic geometry if and only if it has *two* Riemannian points.

Acknowledgment. The author appreciates Årpád Kurusa's assistance in preparing and discussing all parts of this article.

References

- Ralph Alexander, Planes for which the lines are the shortest paths between points, Illinois Journal of Mathematics, 22, no. 2, (1978), 177– 190.
- [2] Rouben V. Ambartzumian, A note on pseudo-metrics on the plane, Zeitschrift f
 ür Wahrscheinlichkeitstheorie und Verwandte Gebiete, 37, no. 2, (1976), 145–155.
- [3] Eugenio Beltrami, Risoluzione del problema riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette, 1865.
- [4] Herbert Busemann, The geometry of geodesics, Academic Press Inc., New York, 1955.
- [5] Herbert Busemann, Paul J. Kelly, Projective Geometry and Projective Metrics, Academic Press Inc., New York, 1953.
- [6] Herbert Busemann, Walther Mayer, On the foundations of calculus of variations, Transactions of the American Mathematical Society, 49, no. 2, (1941), 173–198.
- [7] James W. Cannon, William J. Floyd, Richard Kenyon, Walter R. Parry, Hyperbolic geometry, Flavors of geometry, MSRI Publications, 31, (1997), 59–115.
- [8] Manfredo P. do Carmo, Riemannian Geometry, 1992.

- [9] Árpád Kurusa, Support theorems for totally geodesic Radon transforms on constant curvature spaces, Proceedings of the American Mathematical Society, 112, no. 2, (1994), 429–435.
- [10] Árpád Kurusa, Straight projective-metric spaces with centres, Journal of Geometry, 109, no. 1, (2018), 22.
- [11] Árpád Kurusa, Hilbert geometries with Riemannian points, Annali di Matematica Pura ed Applicata, 199, no. 2, (2020), 809–820.
- [12] A. V. Pogorelov, A complete solution of Hilberts fourth problem, 14, (1973), 46–49.