All Solutions of the Diophantine Equation
 $$
25^{x}-7^{y}=z^{2}
$$

Apirat Siraworakun, Suton Tadee
Department of Mathematics
Faculty of Science and Technology
Thepsatri Rajabhat University
Lop Buri 15000, Thailand
email: suton.t@lawasri.tru.ac.th

(Received November 2, 2023, Accepted December 7, 2023,
Published February 12, 2024)

Abstract

In this work, we show that the Diophantine equation $25^{x}-7^{y}=z^{2}$ has only two non-negative integer solutions. The solutions (x, y, z) are $(0,0,0)$ and $(2,2,24)$.

1 Introduction

Nowadays, finding solutions of the Diophantine equation $a^{x}-b^{y}=z^{2}$ is a famous topic in the field of exponential Diophantine equations. Many mathematicians gave the non-negative integer solutions of the Diophantine equation, where a and b are explicit positive integers. In 2020, Burshtein [1] gathered all positive integer solutions of the Diophantine equations $13^{x}-5^{y}=z^{2}$ and $19^{x}-5^{y}=z^{2}$. In 2023, Tadee [3] investigated the Diophantine equations $9^{x}-3^{y}=z^{2}$ and $13^{x}-7^{y}=z^{2}$. Thongnak, Kaewong and Chuayjan ([5], [6]) discovered all non-negative integer solutions of the Diophantine equations $5^{x}-3^{y}=z^{2}$ and $11^{x}-17^{y}=z^{2}$, respectively. Moreover, Tadee and Wannaphan [4] studied the Diophantine equations $(p+a)^{x}-p^{y}=z^{2}$ and $p^{x}-(p+a)^{y}=z^{2}$, where a is a positive integer and p is a prime number.

Key words and phrases: Diophantine equation, Mihăilescu's Theorem.
AMS (MOS) Subject Classifications: 11D61.
The corresponding author is Suton Tadee.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net

In this article, we investigate all non-negative integer solutions of the Diophantine equation

$$
\begin{equation*}
25^{x}-7^{y}=z^{2} \tag{1.1}
\end{equation*}
$$

In 2004, Mihăilescu [2] presented an important theorem, which will be used to prove our result.

Theorem 1.1. [2] (Mihăilescu's Theorem) The equation $a^{x}-b^{y}=1$ has the unique solution $(a, b, x, y)=(3,2,2,3)$, where a, b, x and y are positive integers with $\min \{a, b, x, y\}>1$.

2 Main result

Theorem 2.1. All non-negative integer solutions (x, y, z) of (1.1) are ($0,0,0$) and (2, 2, 24).

Proof. We consider the four exclusive cases:
Case 1. $x=0$ and $y=0$. From (1.1), we have $(x, y, z)=(0,0,0)$.

Case 2. $x=0$ and $y>0$. From (1.1), we have $z^{2}<0$, a contradiction.
Case 3. $x>0$ and $y=0$. From (1.1), we get $25^{x}-z^{2}=1$. It is easy to show that $x>1$ and $z>1$. This is impossible by Theorem 1.1.

Case 4. $x>0$ and $y>0$. From (1.1), we have $\left(5^{x}-z\right)\left(5^{x}+z\right)=7^{y}$. Then there exists a non-negative integer u such that $5^{x}-z=7^{u}$ and $5^{x}+z=7^{y-u}$. Thus $2 \cdot 5^{x}=7^{u}\left(7^{y-2 u}+1\right)$. Since $\operatorname{gcd}\left(7,2 \cdot 5^{x}\right)=1$, we have $u=0$ and $2 \cdot 5^{x}=7^{y}+1$. Then $y \neq 1$. Assume that $y>2$. Then $x>2$ and $2 \cdot 5^{x}-50=7^{y}+1-50$. This implies that $50\left(5^{x-2}-1\right)=49\left(7^{y-2}-1\right)$. Let $m=x-2$ and $n=y-2$. Then $50\left(5^{m}-1\right)=49\left(7^{n}-1\right)$. Since $\operatorname{gcd}(5,49)=1$ and $\operatorname{gcd}(49,50)=1$, we can conclude that $5 \mid\left(7^{n}-1\right)$ and $49 \mid\left(5^{m}-1\right)$, respectively. Since $\operatorname{ord}_{5} 7=4$ and $\operatorname{ord}_{49} 5=42$, we obtain that $4 \mid n$ and $42 \mid m$, respectively. Then $m=42 l$ for some positive integer l. This implies that $50\left(5^{42 l}-1\right)=49\left(7^{n}-1\right)$. Since $5^{42 l} \equiv 1(\bmod 31)$ and $\operatorname{gcd}(31,49)=1$, we obtain $31 \mid\left(7^{n}-1\right)$. Since $\operatorname{ord}_{31} 7=15$, we get $15 \mid n$. Thus $60 \mid n$ and so $n=60 s$ for some positive integer s. This implies that $50\left(5^{m}-1\right)=49\left(7^{60 s}-1\right)$. Then $125 \mid 50\left(5^{m}-1\right)$ because $7^{60 s} \equiv 1$ $(\bmod 125)$. Therefore, $5 \mid\left(5^{m}-1\right)$, a contradiction. Thus $y=2$. Hence $(x, y, z)=(2,2,24)$.

Acknowledgement

This work was supported by the Research and Development Institute, Faculty of Science and Technology, Thepsatri Rajabhat University, Thailand.

References

[1] N. Burshtein, All the solutions of the Diophantine equations $13^{x}-5^{y}=$ $z^{2}, 19^{x}-5^{y}=z^{2}$ in positive integers x, y, z, Annals of Pure and Applied Mathematics, 22, no. 2, (2020), 93-96.
[2] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, Journal für die Reine und Angewandte Mathematik, 572, (2004), 167-195.
[3] S. Tadee, A short note on two Diophantine equations $9^{x}-3^{y}=z^{2}$ and $13^{x}-7^{y}=z^{2}$, Journal of Mathematics and Informatics, 24, (2023), 23-25.
[4] S. Tadee, C. Wannaphan, On the Diophantine equations $(p+a)^{x}-p^{y}=$ z^{2} and $p^{x}-(p+a)^{y}=z^{2}$, International Journal of Mathematics and Computer Science, 19, no. 2, (2024), 459-465.
[5] S. Thongnak, T. Kaewong, W. Chuayjan, On the exponential Diophantine equation $5^{x}-3^{y}=z^{2}$, International Journal of Mathematics and Computer Science, 19, no. 1, (2024), 99-102.
[6] S. Thongnak, T. Kaewong, W. Chuayjan, On the exponential Diophantine equation $11^{x}-17^{y}=z^{2}$, International Journal of Mathematics and Computer Science, 19, no. 1, (2024), 181-184.

