International Journal of Mathematics and Computer Science, **19**(2024), no. 3, 751–755

$\binom{M}{CS}$

Movable Restrained-Domination in the Corona of Graphs

Stephanie O. Espinola

Department of Mathematics and Statistics Faculty of Mathematics University of Southeastern Philippines Obrero, Davao City, Philippines

email: saomega@usep.edu.ph

(Received December 2, 2023, Accepted January 18, 2024, Published February 12, 2024)

Abstract

Let G be a simple connected graph. A dominating set $S \subseteq V(G)$ of G is a restrained dominating set in G if for every $v \in V(G) \setminus S$ there exists $u \in V(G) \setminus S$ such that $uv \in E(G)$. A restrained dominating set S of G is a 1-movable restrained-dominating set of G if for every $v \in S$ either $S \setminus \{v\}$ is a restrained dominating set of G or there exists $u \in (V(G) \setminus S) \cap N(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a restrained dominating set of G. The minimum cardinality of a 1-movable restrained-dominating set in G, denoted by $\gamma_{mr}^1(G)$, is the 1-movable restrained-domination number of G.

In this paper, the 1-movable restrained-dominating sets in the corona of graphs are characterized. Also, the 1-movable restrained-domination numbers of these graphs are determined.

1 Introduction

Let G = (V, E) be a simple graph. The open neighborhood of a vertex v of G is defined as the set $N_G(v) = \{u \in V(G) | uv \in E(G)\}$, while the closed neighborhood of v in G is defined as $N_G[v] = N_G(v) \cup \{v\}$. Any

<sup>Key words and phrases: Domination, restrained domination, movable domination, 1-movable restrained-domination, corona of graphs
AMS (MOS) Subject Classifications: 05C69, 05C76.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net</sup>

vertex $u \in N_G(v)$ is called a neighbor of v. The open neighborhood of a set $S \subseteq V(G)$ is defined as $N_G(S) = \bigcup_{v \in S} N_G(v)$, while the closed neighborhood of a set S is defined as $N_G[S] = N_G(S) \cup S$.

A set $S \subseteq V(G)$ is a dominating set of G if for every $v \in V(G) \setminus S$ there exists $u \in S$ such that $uv \in E(G)$. A dominating set $S \subseteq V(G)$ is a restrained dominating set of G if for every $v \in V(G) \setminus S$ there exists $u \in V(G) \setminus S$ such that $uv \in E(G)$. Consequently, a dominating set S of Gis a restrained dominating set of G if either S = V(G) or $\langle V(G) \setminus S \rangle$ has no isolated vertices. The minimum cardinality of a restrained dominating set in G, denoted by $\gamma_r(G)$, is the restrained domination number of G.

Let G be a connected graph. A restrained dominating set S of G is a 1-movable restrained-dominating set of G if for every $v \in S$ either $S \setminus \{v\}$ is a restrained dominating set of G or there exists $u \in (V(G) \setminus S) \cap N(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a restrained-dominating set of G. The minimum cardinality of a 1-movable restrained-dominating set in G, denoted by $\gamma_{mr}^1(G)$, is the 1-movable restrained-domination number of G. Any 1-movable restraineddominating set of cardinality $\gamma_{mr}^1(G)$ is referred to as γ_{mr}^1 -set of G. Not all graphs has a movable restrained-dominating set.

2 Main results

The following remarks follow from the definitions.

Remark 2.1. If G has a 1-movable restrained-dominating set, then

$$\gamma(G) \le \gamma_r(G) \le \gamma_{mr}^1(G).$$

Remark 2.2. For every graph G, the vertex set V(G) of G is not a 1-movable restrained-dominating set of G.

Remark 2.3. If G has a 1-movable restrained-dominating set, then

$$\gamma^1_{mr}(G) \in \{1, 2, 3, \cdots, n-2\}$$

Remark 2.4. If S is a restrained dominating set of G, then every leaf of G is in S.

Theorem 2.5. If a connected graph G has a 1-movable restrained dominating set, then G has no leaves.

Proof. Suppose that G has a 1-movable restrained-dominating set, say S. Suppose G has a leaf, say w. Let u be the support of w. Then, by Remark 2.4, $w \in S$. Suppose that $u \in S$. Then $S \setminus \{w\}$ is not a restrained dominating set of G. Suppose that $u \notin S$. Then $(S \setminus \{w\})$ and $(S \setminus \{w\}) \cup \{u\}$ are not restrained dominating sets of G.

Therefore, in either case, S is not a 1-movable restrained dominating set of G, contrary to our assumption.

Therefore, G has no leaves.

Remark 2.6. The converse of Theorem 2.5 is not necessarily true.

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H, denoted by, $G \circ H$, is the graph obtained by taking one copy of G and m copies of H and then joining the *ith* vertex of G to every vertex in the *ith* copy of H. For every $v \in V(G)$, we denote by H^v the copy of H whose vertices are joined or attached to the vertex v of G. Denote by $v + H^v$ the subgraph of the corona $G \circ H$ corresponding to the join $\langle \{v\} \rangle + H^v$, where $v \in V(G)$.

Theorem 2.7. Let G and H be non-trivial connected graphs. Then $S \subseteq V(G \circ H)$ is a restrained dominating set in $G \circ H$ if and only if $S = A \cup B \cup C \cup D$, where $A \subseteq V(G)$, $B = \bigcup \{B_v : v \in A \text{ and either } B_v = \emptyset \text{ or } B_v \neq \emptyset$ and $\langle V(H^v) \setminus B_v \rangle$ has no isolated vertices $\}$, $C = \bigcup \{E_w : w \notin A, N_G(w) \cap A \neq \emptyset$ and E_w is a dominating set in H^w with $N_G(w) \cap (V(G) \setminus S) \neq \emptyset$ whenever $E_w = V(H^w)\}$ and $D = \bigcup \{D_w : w \notin A, N_G(w) \cap A = \emptyset$ and D_w is a dominating set in $H^w\}$.

Proof. Suppose that S is a restrained dominating set in $G \circ H$. Let $A = V(G) \cap S$ and let $v \in A$. Put $B_v = V(H^v) \cap S$. Suppose that $B_v \neq \emptyset$. Since S is a restrained dominating set in $G \circ H$, $\langle V(H^v) \setminus B_v \rangle$ has no isolated vertices.

Next, let $w \in V(G) \setminus A$. Consider the following cases: **Case 1**: Suppose that $w \in N_G(A)$.

Let $E_w = V(H^w) \cap S$. Since S is a dominating set in $G \circ H$ and $w \notin S$, it follows that E_w is a dominating set in H^w . Suppose that $E_w = V(H^w)$. Then since S is a restrained dominating set in $G \circ H$, $N_G(w) \cap (V(G) \setminus A) \neq \emptyset$. **Case 2**: Suppose that $w \notin N_G(A)$.

Let $D_w = V(H^w) \cap S$. Since S is a restrained dominating set in $G \circ H$ and $w \notin S$, it follows that D_w is a dominating set in H^w .

Now, let $B = \bigcup \{B_v : v \in A \text{ and either } B_v = \emptyset \text{ or } B_v \neq \emptyset \text{ and } \langle V(H^v) \setminus B_v \rangle$

has no isolated vertices }, $C = \bigcup \{E_w : w \notin A, N_G(w) \cap A \neq \emptyset$ and E_w is a dominating set in H^w with $N_G(w) \cap (V(G) \setminus S) \neq \emptyset$ whenever $E_w = V(H^w)$ } and $D = \bigcup \{D_w : w \notin A, N_G(w) \cap A = \emptyset$ and D_w is a dominating set in H^w }. Then $S = A \cup B \cup C \cup D$.

For the converse, suppose that $S = A \cup B \cup C \cup D$, where A, B, C and Dare described above. If $S = V(G \circ H)$, then S is a dominating set in $G \circ H$. Suppose that $S \neq V(G \circ H)$. Then $V(G \circ H) \setminus S \neq \emptyset$. Let $x \in V(G \circ H) \setminus S$ and let $w \in V(G)$ such that $x \in V(w + H^w)$. If $w \in S$, then $xw \in E(G \circ H)$. If $w \notin S$, then $x \in S_w = V(H^w \cap S)$, where $S_w(D_w \text{ or } E_w)$ is a dominating set in H^w . Thus $\exists z \in V(H^w) \setminus S_w$ such that $xz \in E(G \circ H)$. Therefore, S is a dominating set in $G \circ H$.

Now, suppose that $S = V(G \circ H)$. Then S is a restrained dominating set in $G \circ H$. Suppose that $S \neq V(G \circ H)$. Let $w \in V(G \circ H) \setminus S$ and let $v \in V(G)$ such that $w \in V(v + H^v)$. Consider the following cases: **Case 1**: Suppose that w = v.

Then $w \notin S$. If $w \in N_G(A)$, then $E_w = E_v$ is a dominating set in H^w . If $E_w \neq V(H^w)$, then $\exists y \in V(H^w) \setminus E_w$ such that $wy \in E(G \circ H)$. If $E_w = V(H^w)$, then by assumption $w \in N_G(V(G) \setminus A)$. Suppose that $w \notin N_G(A)$. Since G is connected and non-trivial, $\exists x \in V(G) \setminus A$ such that $wx \in E(G)$. Thus $\exists x \in V(G \circ H) \setminus S$ such that $wx \in E(G \circ H)$.

Case 2: Suppose that $w \neq v$.

Then $w \in V(H^v) \setminus B_v$, $w \in V(H^v) \setminus D_v$ or $w \in V(H^v) \setminus E_v$. Suppose that $w \in V(H^v) \setminus B_v$. Then $\langle V(H^v) \setminus B_v \rangle$ has no isolated vertices. Thus, $\exists y \in V(H^v) \setminus B_v$ such that $wy \in E(G \circ H)$. If $w \in V(H^v) \setminus D_v$ or $w \in V(H^v) \setminus E_v$, then $v \notin A$ and $wv \in E(G \circ H)$.

Therefore, in any case, $\langle V(G \circ H) \setminus S \rangle$ has no isolated vertices; that is, S is a restrained dominating set in $G \circ H$.

Corollary 2.8. Let G and H be non-trivial connected graphs of order n and m, respectively. Then $\gamma_r(G \circ H) \leq n\gamma(H)$.

The next result gives an upper bound for the 1-movable restrained-dominating set in the corona of graphs.

Theorem 2.9. Let G and H be non-trivial connected graphs such that H has a 1-movable restrained-dominating set. Then $\gamma_{mr}^1(G \circ H) \leq |V(G)| \gamma_{mr}^1(H)$.

Proof. Let S be a minimum 1-movable restrained-dominating set in H. For each $v \in V(G)$, let $S_v \subseteq V(H^v)$ such that $\langle S_v \rangle \cong \langle S \rangle$. Let $C = \bigcup_{v \in V(G)} S_v$. Movable Restrained Domination...

Then, by Theorem 2.7, C is a restrained dominating set in $G \circ H$. Let $u \in C$ and $w \in V(G)$ such that $u \in V(H^w)$. Then $u \in S_w$. Since S_w is a 1-movable restrained-dominating set in H^w , $S_w \setminus \{u\}$ or $((S_w \setminus \{u\}) \cup \{z\})$ is a restrained dominating set in H^w for some $z \in N_{H^w}(u) \cap (V(H^w) \setminus S_w)$. Thus, by Theorem 2.7,

$$C \setminus \{u\} = \left(\bigcup_{v \in V(G) \setminus \{w\}} S_v\right) \cup \left(S_w \setminus \{u\}\right)$$

or

$$(C \setminus \{u\}) \cup \{z\} = (\bigcup_{v \in V(G) \setminus \{w\}} S_v) \cup ((S_w \setminus \{u\}) \cup \{z\})$$

is a restrained dominating set in $G \circ H$ for some $z \in N_{G \circ H}(u) \cap (V(G \circ H) \setminus C)$. Hence, C is a 1-movable restrained-dominating set in $G \circ H$. Therefore,

$$\gamma_{mr}^1(G \circ H) \le |C| = \sum_{v \in V(G)} |S_v| = |V(G)| \gamma_{mr}^1(H).$$

_		

References

- J. Blair, R. Gera, S. Horton, Movable dominating sensor sets in networks, Journal of Combinatorial Mathematics and Combinatorial Computation, 77, (2011), 103–123.
- [2] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, L.R. Markus, *Restrained domination in graphs*, Discrete Mathematics, **203**, (1999), 61–19.
- [3] S.A. Omega, S.R. Canoy Jr., Movable locating-domination in graphs, International Journal of Mathematical Analysis, 10(4), (2016), 159– 169.