The Solutions of the Diophantine Equations $p^{x}+p^{y}=z^{q}$ and $p^{x}-p^{y}=z^{q}$

Suton Tadee
Department of Mathematics
Faculty of Science and Technology
Thepsatri Rajabhat University
Lop Buri 15000, Thailand
email: suton.t@lawasri.tru.ac.th

(Received November 1, 2023, Accepted December 6, 2023,
Published February 12, 2024)

Abstract

Let p and q be prime numbers. In this article, we show that all nonnegative integer solutions of the Diophantine equation $p^{x}+p^{y}=z^{q}$ are $(p, q, x, y, z)=\left(2, q, q t+q-1, q t+q-1,2^{t+1}\right),\left(2^{q}-1, q, q t+1, q t, 2\left(2^{q}-\right.\right.$ $\left.1)^{t}\right),\left(2,2,2 t+3,2 t, 3 \cdot 2^{t}\right)$, where t is a non-negative integer. All nonnegative integer solutions of the Diophantine equation $p^{x}-p^{y}=z^{q}$ are $(p, q, x, y, z)=(p, q, t, t, 0),\left(2, q, q t+1, q t, 2^{t}\right),\left(4 v^{2}+1,2,2 t+\right.$ $\left.1,2 t, 2 v\left(4 v^{2}+1\right)^{t}\right),\left(3,3,3 t+2,3 t, 2 \cdot 3^{t}\right)$, where t is a non-negative integer and v is a positive integer.

1 Introduction

In 2019, Burshtein [1] considered the Diophantine equations $p^{x}+p^{y}=z^{2}$ and $p^{x}-p^{y}=z^{2}$, where p is a prime number. Burshtein proved that all positive integer solutions of the Diophantine equation $p^{x}+p^{y}=z^{2}$ are $(p, x, y, z)=$ $\left(2,2 t+1,2 t+1,2^{t+1}\right),\left(3,2 t+1,2 t, 2 \cdot 3^{t}\right),\left(2,2 t+3,2 t, 3 \cdot 2^{t}\right)$, where t is a positive integer. All positive integer solutions of the Diophantine equation $p^{x}-p^{y}=z^{2}$ are $(p, x, y, z)=\left(2,2 t+1,2 t, 2^{t}\right),\left(4 v^{2}+1,2 t+1,2 t, 2 v\left(4 v^{2}+1\right)^{t}\right)$, where t and

Key words and phrases: Diophantine equation, Mihăilescu's Theorem.
AMS (MOS) Subject Classifications: 11D61.
ISSN 1814-0432, 2024, http://ijmcs.future-in-tech.net
v are positive integers. In this paper, we generalize the Burshtein's results to obtain all non-negative integer solutions of two Diophantine equations $p^{x}+p^{y}=z^{q}$ and $p^{x}-p^{y}=z^{q}$, where p and q are prime numbers.

2 Preliminaries

Theorem 2.1. [1] Let p be an odd prime number. Then all positive integer solutions of the Diophantine equation $p^{x}-p^{y}=z^{2}$ are $(p, x, y, z)=\left(4 v^{2}+\right.$ $\left.1,2 t+1,2 t, 2 v\left(4 v^{2}+1\right)^{t}\right)$, where t and v are positive integers.

Theorem 2.2. [2] (Mihăilescu's Theorem) The equation $a^{x}-b^{y}=1$ has the unique solution $(a, b, x, y)=(3,2,2,3)$, where a, b, x and y are positive integers with $\min \{a, b, x, y\}>1$.

3 Main Results

Theorem 3.1. Let p and q be prime numbers. Then all non-negative integer solutions of the Diophantine equation $p^{x}+p^{y}=z^{q}$ are $(p, q, x, y, z)=$ $\left(2, q, q t+q-1, q t+q-1,2^{t+1}\right),\left(2^{q}-1, q, q t+1, q t, 2\left(2^{q}-1\right)^{t}\right),(2,2,2 t+$ $3,2 t, 3 \cdot 2^{t}$), where t is a non-negative integer.

Proof. Without loss of generality, we may assume that $x \geq y$. If $x=y$, then $2 p^{x}=z^{q}$. Since $q \geq 2$, we have $2 \mid p$. Therefore, $p=2$. This implies that $z=2^{\frac{x+1}{q}}$. Then $x=q t+q-1$, for some non-negative integer t. Hence $(p, q, x, y, z)=\left(2, q, q t+q-1, q t+q-1,2^{t+1}\right)$.

Next, we consider $x>y$. Then $p^{y}\left(p^{x-y}+1\right)=z^{q}$. Since $\operatorname{gcd}\left(p^{y}, p^{x-y}+1\right)=$ 1 , there exist positive integers m and n such $z=m n$ with $p^{x-y}+1=m^{q}$ and $p^{y}=n^{q}$. Assume that $m=1$. Then $p^{x-y}=0$, a contradiction. Thus $m>1$.

Case 1. $x-y=1$. Then $p=m^{q}-1=(m-1)\left(m^{q-1}+m^{q-2}+\cdots+m+1\right)$. Therefore, $m=2$ and so $p=2^{q}-1$. It follows that $\left(2^{q}-1\right)^{y}=n^{q}$ or $n=\left(2^{q}-1\right)^{\frac{y}{q}}$. Thus $y=q t$ for some non-negative integer t. Hence $(p, q, x, y, z)=\left(2^{q}-1, q, q t+1, q t, 2\left(2^{q}-1\right)^{t}\right)$.

Case 2. $x-y>1$. Since $m^{q}-p^{x-y}=1$, we get $(m, p, q, x-y)=(3,2,2,3)$, by Theorem 2.2. Then $n=2^{\frac{y}{q}}$. This implies that $y=q t$, for some nonnegative integer t. Hence $(p, q, x, y, z)=\left(2,2,2 t+3,2 t, 3 \cdot 2^{t}\right)$.

The Solutions of the Diophantine Equations $p^{x}+p^{y}=z^{q}, p^{x}-p^{y}=z^{q} 623$

Theorem 3.2. Let p and q be prime numbers. Then all non-negative integer solutions of the Diophantine equation $p^{x}-p^{y}=z^{q}$ are $(p, q, x, y, z)=$ $(p, q, t, t, 0),\left(2, q, q t+1, q t, 2^{t}\right),\left(4 v^{2}+1,2,2 t+1,2 t, 2 v\left(4 v^{2}+1\right)^{t}\right),(3,3,3 t+$ $2,3 t, 2 \cdot 3^{t}$), where t is a non-negative integer and v is a positive integer.

Proof. If $x=y$, then $z=0$. Hence $(p, q, x, y, z)=(p, q, t, t, 0)$, for some nonnegative integer t. Next, we consider $x>y$. Then $p^{y}\left(p^{x-y}-1\right)=z^{q}$. Since $\operatorname{gcd}\left(p^{y}, p^{x-y}-1\right)=1$, there exist positive integers m and n such $z=m n$ with $p^{x-y}-1=m^{q}$ and $p^{y}=n^{q}$. If $m=1$, then $p^{x-y}=2$. Therefore, $p=2$ and $x-y=1$. It follows that $2^{y}=n^{q}$ or $n=2^{\frac{y}{q}}$. Then $y=q t$, for some non-negative integer t. Hence $(p, q, x, y, z)=\left(2, q, q t+1, q t, 2^{t}\right)$. For $m>1$, we consider the following cases:

Case 1. $x-y=1$. Then $p=m^{q}+1$ and so $p>2$. Assume that $q>2$. Since q is prime, we get q is odd. Therefore, $p=(m+1)\left(m^{q-1}-m^{q-2}+\cdots+1\right)$. This implies that $m+1=p$ and $m^{q-1}-m^{q-2}+\cdots+1=1$. Then $m=1$, a contradiction. Thus $q=2$. By Theorem 2.1, we obtain $(p, q, x, y, z)=$ $\left(4 v^{2}+1,2,2 t+1,2 t, 2 v\left(4 v^{2}+1\right)^{t}\right)$, where t is a non-negative integer and v is a positive integer.

Case 2. $x-y>1$. Since $p^{x-y}-m^{q}=1$, we obtain $(p, m, x-y, q)=$ $(3,2,2,3)$, by Theorem 2.2. Then $3^{y}=n^{3}$ and so $n=3^{\frac{y}{3}}$. Thus $y=3 t$, for some non-negative integer t. Hence $(p, q, x, y, z)=\left(3,3,3 t+2,3 t, 2 \cdot 3^{t}\right)$.

Acknowledgement

This work was supported by the Research and Development Institute, Faculty of Science and Technology, Thepsatri Rajabhat University, Thailand.

References

[1] N. Burshtein, All the solutions of the Diophantine equations $p^{x}+p^{y}=z^{2}$ and $p^{x}-p^{y}=z^{2}$ when $p \geq 2$ is prime, Annals of Pure and Applied Mathematics, 19, no. 2, (2019), 111-119.
[2] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, Journal für die Reine und Angewandte Mathematik, 572, (2004), 167-195.

